首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a new method for independent monitoring of the angle between the spinning axis and the magnetic field in solid-state NMR. A Hall effect magnetic flux sensor is fixed to the spinning housing, so that a change in the stator orientation leads to a change in the angle between the Hall plane and the static magnetic field. This leads to a change in the Hall voltage generated by the sensor when an electric current is passed through it. The Hall voltage may be measured externally by a precision voltmeter, allowing the spinning angle to be measured non-mechanically and independent of the NMR experiment. If the Hall sensor is mounted so that the magnetic field is approximately parallel to the Hall plane, the Hall voltage becomes highly sensitive to the stator orientation. The current angular accuracy is around 10 millidegrees. The precautions needed to achieve higher angular accuracy are described.  相似文献   

2.
Planar Hall Effect (PHE) in NiFe(t)/IrMn(10.0 nm) thin film structures has been experimentally investigated as a function of NiFe thickness in the range from 3 to 20 nm, under the applied magnetic field perpendicular to the easy axis. The PHE voltage change and its field sensitivity increase with NiFe thickness, but the field interval of two voltage maxima decreases with the thickness. There are good agreements between measured and calculated PHE voltage profiles, where the parameters of exchange-biased and effective anisotropy fields have been characterized to decrease with NiFe thickness. However, an anisotropic resistivity change increases as the NiFe thickness increases. These analyses suggest that PHE is the effective method, inferred to single domain, to determine the electrical and magnetic parameters in magnetic devices.  相似文献   

3.
An angle dependent analysis of the planar Hall effect (PHE) in nanocrystalline single-domain Co(60)Fe(20)B(20) thin films is reported. In a combined experimental and theoretical study we show that the transverse resistivity of the PHE is entirely driven by anisotropic magnetoresistance (AMR). Our results for Co(60)Fe(20)B(20) obtained from first principles theory in conjunction with a Boltzmann transport model take into account the nanocrystallinity and the presence of 20 at.?% boron. The ab initio AMR ratio of 0.12% agrees well with the experimental value of 0.22%. Furthermore, we experimentally demonstrate that the anomalous Hall effect contributes negligibly in the present case.  相似文献   

4.
We describe a straightforward approach to the characterization of individual thin-film NiFe ferromagnets, useful from cryogenic to room temperature. The technique is based upon the local Hall effect (LHE), in which strong fringe fields present near the edge of a ferromagnet induce a Hall voltage in a nanoscale semiconducting cross-junction. Hysteresis loops are obtained for individual nanomagnets of widths ranging from 1 μm to less than 100 nm. The LHE is an intrinsically non-perturbative technique, ideal for application to soft ferromagnetic systems. We anticipate that the theoretical sensitivity of this arrangement can rival that of thin-film SQUID susceptometers, with the added benefit that it is simpler and does not require low temperatures.  相似文献   

5.
The transverse laser induced thermoelectric voltage effect has been investigated in tilted La0.5Sr0.5CoO3 thin films grown on vicinal cut LaAlO3 (1 0 0) substrates when films are irradiated by pulse laser at room temperature. The detected voltage signals are demonstrated to originate from the transverse Seebeck effect as the linear dependence of voltage on tilted angle in the range of small tilted angle. The Seebeck coefficient anisotropy ΔS of 0.03 μV/K at room temperature is calculated and its distorted cubic structure is thought to be responsible for this. Films grown on a series of substrates with different tilted angles show the optimum angle of 19.8° for the maximum voltage. Film thickness dependence of voltage has also been studied.  相似文献   

6.
《Current Applied Physics》2015,15(8):902-905
The planar Hall effect (PHE) in W/CoFeB/MgO structure with perpendicular magnetic anisotropy was investigated as a function of CoFeB thickness (tCoFeB). The PHE is measured by sweeping the in-plane magnetic field at various azimuthal angles as well as by rotating strong magnetic field which is enough to saturate the magnetization. We observed a huge PHE in the W/CoFeB/MgO sample, which is even larger than anomalous Hall effect (AHE). This is distinct from the results in Ta/CoFeB/MgO samples showing a much smaller PHE than AHE. Since the PHE is insensitive to the tCoFeB while the AHE is proportional to the tCoFeB, the unprecedented PHE can be attributed to the W layer with a large spin-orbit coupling.  相似文献   

7.
In this paper, we present the numerical simulation of transient response of short pulse propagating through a microstrip step junction on anisotropic substrate having a tilted optical axis. In the simulation, the FD-TD method is extended to treat the cases having tilted optical axis expressed by a permittivity tensor with off-diagonal elements. The results show that the dispersion of transient signal caused by microstrip step discontinuities is quite significant and the dependence of transient characteristics of microstrip lines on the tilted angle of optical axis for anisotropic substrate can not be neglected.  相似文献   

8.
We determine the current distributions in conducting strips whose resistivity and Hall angle vary with longitudinal position along the wire. We consider isolated, finite rectangular Hall bars between semi-infinite leads, as well as periodic structures. The approaches used avoid standard approximations such as perfectly-conducting leads, well-separated interfaces, or small resistivity changes. We find that as an isolated Hall bar is shortened, one enters a regime of closed current loops in the classical Hall effect. Related behavior is found for periodic Hall patterns.  相似文献   

9.
不等位电势是霍尔式传感器产生零位误差的主要因素.在霍尔式传感器的直流激励特性实验中霍尔元件处于梯度磁场中,但是磁场强度未知,因此无法确定磁场强度为零的位置.当采用交流激励时,通过调节霍尔元件在磁场中的位置,使输出的最小电势便是不等位电势,此时便可通过补偿桥路进行补偿.  相似文献   

10.
田岱  陈才干  王华  金晓峰 《中国物理 B》2016,25(10):107201-107201
The spin Hall effect has been investigated in 10-nm-thick epitaxial Au(001) single crystal films via H-pattern devices,whose minimum characteristic dimension is about 40 nm. By improving the film quality and optimizing the in-plane geometry parameters of the devices, we explicitly extract the spin Hall effect contribution from the ballistic and bypass contribution which were previously reported to be dominating the non-local voltage. Furthermore, we calculate a lower limit of the spin Hall angle of 0.08 at room temperature. Our results indicate that the giant spin Hall effect in Au thin films is dominated not by the interior defects scattering, but by the surface scattering. Besides, our results also provide an additional experimental method to determine the magnitude of spin Hall angle unambiguously.  相似文献   

11.
The angular dependence of anisotropic magnetoresistance (AMR) and planar Hall effect (PHE) were studied as a function of temperatures from the same epitaxial Fe3O4 film on MgO(001) substrates. The PHE contains only a twofold angular dependence, but the AMR below 200 K is constituted with both twofold and fourfold symmetric terms. Our results also prove that the origin of the fourfold symmetry of AMR is related to the lattice symmetry rather than the spin scattering near the antiphase boundaries.  相似文献   

12.
霍尔效应在直流电压隔离传送中的应用   总被引:2,自引:1,他引:1  
瞿华富  唐涛 《物理实验》2007,27(2):16-18
应用基于霍尔效应的磁平衡原理设计了直流电压高精度隔离传送传感器,并与光耦传感器进行了比较,结果表明:在温度变化的环境中,该传感器隔离传送直流电压的精度优于光耦传感器28倍.  相似文献   

13.
姜伟  鲁刚  宋录武 《中国物理》1995,4(12):923-932
Based on the theoretical results of inversion layers model and interpenetrating network model, we studied the anomalous Hall effect of heterogenous semiconductor samples, and obtained the following results: (1) the wider the sample energy gap, the higher the temper-ature at which anomalous Hall effect begins to appear; (2) the lower the sample resistivity, the higher the temperature at which anomalous Hall effect begins to appear, which is further verified in our experiment; (3) mobility is the main factor which determines what role p-n junction plays in sample Hall voltage; (4) for n-Ge sample with inversion layers structure, with the increase of p-type region, the Hall effect changes from normal n-type Hall effect to anomalous Hall effect of the single dip type, then to anomalous Hall effect of the second reversal type.  相似文献   

14.
Recently, a new type of Weyl semimetal called type-II Weyl semimetal has been proposed. Unlike the usual (type-I) Weyl semimetal, which has a point-like Fermi surface, this new type of Weyl semimetal has a tilted conical spectrum around the Weyl point. Here we calculate the anomalous Hall conductivity of a Weyl semimetal with a tilted conical spectrum for a pair of Weyl points, using the Kubo formula. We find that the Hall conductivity is not universal and can change sign as a function of the parameters quantifying the tilts. Our results suggest that even for the case where the separation between the Weyl points vanishes, tilting of the conical spectrum could give rise to a finite anomalous Hall effect, if the tilts of the two cones are not identical.  相似文献   

15.
We analyze electron transport in multiprobe quantum spin Hall (QSH) bars using the Büttiker formalism and draw parallels with their quantum Hall (QH) counterparts. We find that in a QSH bar the measured resistance changes upon introducing side voltage probes, in contrast to the QH case. We also study four- and six-terminal geometries and derive the expressions for the resistances. For these our analysis is generalized from the single-channel to the multi-channel case and to the inclusion of backscattering originating from a constriction placed within the bar.  相似文献   

16.
Electrodeposited CoCu/Cu multilayers were investigated by measuring both anisotropic magnetoresistance (AMR) and planar Hall effect (PHE) simultaneously. Studies have been carried out on a [Co(3 nm)/Cu(4 nm)]50 multilayer sample, where a maximum of ?8.8 % GMR was observed at room temperature. A direct comparison of AMR and PHE output has been made both as a function of field and its relative orientation with respect to the current. Marked changes in PHE loops were observed at different angles (between magnetic field and applied current) whereas no noticeable changes could be found for AMR results. Such PHE outputs are the manifestations of complex spin reorganization due to strong antiferromagnetic-coupling between adjacent magnetic layers. In case of angular dependence output, when the applied field is less than the coercive field, the PHE output shows a deviation from the Sin2θ dependence that can be correlated to the domain wall propagation.  相似文献   

17.
The process of magnetization reversal in ferromagnetic Ga(1-x)Mn(x)As epilayers has been systematically investigated using the planar Hall effect (PHE). Interestingly, we have observed a pronounced asymmetry in the PHE hysteresis when the range of the field scan is restricted to fields below the final magnetization transition. The observed behavior indicates that (a) multidomain structures are formed as M undergoes a reorientation, (b) the domain landscape formed in this way remains stable even after the magnetic field is switched off, and (c) the reorientation of magnetization directions corresponding to the transition points in PHE takes place separately within each domain.  相似文献   

18.
We report integration of an InAs quantum well micro-Hall magnetic sensor with microfluidics and real-time detection of moving superparamagnetic beads. Beads moving within and around the Hall cross area result in positive and negative Hall voltage signals, respectively. Relative magnitudes and polarities of the signals measured for a random distribution of immobilized beads over the sensor are in good agreement with calculated values and explain consistently the shape of the dynamic signal.  相似文献   

19.
Recent low-temperature scanning-force-microscopy experiments on narrow Hall bars, under the conditions of the integer quantum Hall effect (IQHE) and its breakdown, have revealed an interesting position dependence of the Hall potential, which changes drastically with the applied magnetic field and the strength of the imposed current through the sample. The present paper shows, that inclusion of Joule heating into an existing self-consistent theory of screening and magneto-transport, which assumes translation invariant Hall bars with a homogeneous background charge due to doping, can explain the experimental results on the breakdown of the IQHE in the so called edge-dominated regime.  相似文献   

20.
The magnetization switching phenomena of GaMnAs Hall devices have been investigated by using the planar Hall effect (PHE) measurement. Though two different sizes of Hall bar devices, width of 300 and of 10 μm, show very similar Curie temperature, their magnetization switching fields behave significantly different. While the angle dependence of magnetization switching field of the 300 μm device showed typical rectangular shape behavior with an applied magnetic field angle in the polar plot, that of the 10 μm device exhibited large step at 〈1 1 0〉 crystallographic directions, breaking the continuity of the switching field in angle dependence. Such unusual phenomenon observed in the 10 μm device was discussed in terms of the change in magnetic anisotropy by the fabrication of micro-device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号