首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to describe high-frequency damping mechanisms of ferromagnetic films by means of the imaginary part of the frequency-dependant permeability, CMOS compatible ferromagnetic Fe36Co44Hf9N11 films were deposited by reactive r.f. magnetron sputtering on oxidised 5×5 mm2×380 μm (1 0 0)-silicon substrates with a 6-in. Fe38Co47Hf15 target, as well as magnetic field annealing between 300 and 600 °C. An in-plane uniaxial anisotropy of around 4.5 mT as well as an excellent soft magnetic behaviour with a saturation polarisation of approximately 1.4 T could be observed after heat treatment at the above-mentioned temperatures, which drives these films to a high-frequency suitability. Ferromagnetic resonance frequencies of approximately up to 2.4 GHz could be obtained. The frequency-dependant permeability was measured with a broadband permeameter. Depending on the heat treatment, an increase of the full-width at half-maximum (FWHM) of the imaginary part of the frequency-dependant permeability is discussed in terms of two-magnon scattering, anisotropy-type competition and local resonance generation through predominant grain growth causing magnetisation and anisotropy inhomogeneities in the magnetic films. The grain size of the films was determined by (HRTEM) imaging and amounts from a few nanometres for films heat treated at 300 °C to more than 10 nm at 600 °C where the FWHM Δfeff and the Landau–Lifschitz–Gilbert equation damping parameter αeff increases with dnm2 and dnm (e.g. dnm is the grain diameter of the nonmagnetic Hf–N phase), respectively.  相似文献   

2.
The static magnetic properties and ferromagnetic resonance spectra of multilayer CoFeZr-α-Si films with different numbers and thicknesses of magnetic and nonmagnetic layers have been investigated. It is established that the shape of the ferromagnetic resonance spectrum and the resonant fields H res depend on the thickness of nonmagnetic layers and their total number. The character of changes in the spectrum makes it possible to estimate the quality of layers and interfaces.  相似文献   

3.
We report temperature and field dependent lattice structure, magnetic properties and magnetocaloric effect in epitaxial Fe50Rh50 thin films with (001) texture. Temperature-dependent XRD measurements reveal an irreversible first-order phase transition with 0.66% lattice change upon heating/cooling. First-principle calculation shows a state change of Rh from non-magnetic (0 μB) for antiferromagnetic phase to magnetic (0.93 μB) state for ferromagnetic phase. A jump of magnetization at temperature of 305 K and field more than 5 T indicates a field-assisted magnetic state change of Ru that contributes to the jump. Giant positive magnetic entropy change was confirmed by isothermal magnetization measurements and an in-situ temperature rise of 15 K. The magnetic state change of Rh between antiferromagnetic and ferromagnetic states is the main origin of giant magnetic entropy change and large thermal hysteresis observed.  相似文献   

4.
In this contribution, a fundamental new approach is made to explain high enhancement factors in surface-enhanced Raman spectroscopy (SERS) on the basis of chemical enhancement. Usually, high SERS enhancement factors are explained by electromagnetic enhancements due to the excitation of localized surface plasmon resonances and strong near field dipole–dipole coupling. However, very often the corresponding SERS spectra show clear signatures of a chemical enhancement. I propose that this contradiction is easily solved by taking chemical interface damping of the plasmon resonance into account. Chemical interface damping is caused by an electron transfer from the metallic structure into an adsorbate. However, this mechanism is also the basis for chemical enhancement in SERS, i.e., an electron transfers in the lowest unoccupied molecular orbital of the molecule and back to the metal. Hence, if a molecule causes a strong chemical interface damping, the excitation of plasmons is still the key factor for the SERS enhancement. But the reason for this enhancement might be not solely due to electromagnetic fields rather than by a chemical enhancement due to electron transfers from the metal to the molecules.  相似文献   

5.
The Fourier transform gas-phase IR spectrum of 1,3,4-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 800-1500 cm−1 spectral region. Five fundamental bands ν2(A1; 1391.9 cm−1), ν4(A1; 964.4 cm−1), ν5(A1; 894.6 cm−1), ν9(B1; 821.5 cm−1), and ν14(B2; 898.4 cm−1) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. The ν4 and ν9 bands are unperturbed while a strong c-Coriolis resonance perturbs the close-lying ν5 and ν14 bands. This dyad system has been analysed by a model including first and second order c-Coriolis resonance using the theoretically predicted Coriolis coupling constant . The ν2 band is strongly perturbed by a local resonance, and we obtain a set of spectroscopic parameters using a model including second order a-Coriolis resonance with the inactive ν10 + ν14 band. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

6.
H2-broadening coefficients are measured for 41 transitions of PH3 in the QR branch of the ν2 band and the PP, RP, and PQ branches of the ν4 band, using a tunable diode-laser spectrometer. The recorded lines with J values ranging from 2 to 16 and K from 0 to 11 are located between 995 and . The collisional widths are determined by fitting each spectral line with a Voigt profile, a Rautian profile, and a speed-dependent Rautian profile. The latter model provides larger broadening coefficients than the Voigt model. These coefficients γ0(J,K) are found to decrease slightly on the whole as J increases and they decrease significantly for K values approaching or equal to J(J?4). The H2-broadenings are also calculated on the basis of a semiclassical model of interacting linear molecules, using an atom-atom Lennard-Jones potential in addition to the weak electrostatic contributions. The theoretical results are in satisfactory agreement with the experimental data and reproduce the J and K dependencies of the broadenings, but the decrease observed for the QR(J,K) transitions with K=J is notably overestimated.  相似文献   

7.
The LMDR (laser-microwave double resonance) spectroscopy with an intense electric field was applied to the ν5 (CF3 degenerate stretch) fundamental band of CDF3. The dipole moments and polarizability anisotropies in the ground and ν5 vibrational states were determined as follows.
  相似文献   

8.
The analysis of the absorption spectrum of 12CD3H, previously reported for the region 1200–1400 cm?1 concerned with the ν5 band, is now extended to cover the region 872–1213 cm?1 including the two bands ν3 and ν6. These are centered at 1004.553 and 1035.917 cm?1, respectively, and strongly coupled by a Coriolis interaction. A formulation taking this interaction into account rigorously was used; as a result, the energies for the upper states v3 = 1 and v6 = 1 are derived as eigenvalues of an effective Hamiltonian
(J. Mol. Spectrosc.79, 31–46 (1980)). The fit of the upper-state constants based on 1434 observed transitions including J′ and K′ values up to 22 leads to a set of 22 significant values which reproduce the observed wavenumbers with a standard deviation of 0.007 cm?1 close to the experimental uncertainties.  相似文献   

9.
Pressure-induced line shift coefficients have been measured for more than 200 rovibrational lines of NH3 perturbed by O2 at room temperature (T = 295 K) in some branches of the ν2, 2ν2, and ν4 bands. These lines with J values ranging from 1 to 13 are located in the spectral range 800-1800 cm−1. Experiments were made with a high-resolution Fourier transform spectrometer. The treatment of vibration-rotation lines includes interference effects caused by the overlapping of lines. The O2 pressure-induced shift coefficients have been derived from the non-linear least-squares multi-pressure fitting technique. The results illustrate a vibrational dependence of line shifts with vibrational quantum number. Most of the measured shifts are negative in the ν4 band. They are positive for the ν2 and 2ν2 bands. The measured shift coefficients are compared with previous measurements and with those calculated from a semiclassical theory based upon the Robert-Bonamy formalism extended to the case of symmetric top molecule with inversion motion. The predictions are generally in satisfactory agreement with the experimental data. Analyses of measured and predicted results illustrate that these shifts mainly originate from the isotropic part of the intermolecular potential.  相似文献   

10.
The P-H stretching bands ν1/ν5 and 2ν1/ν1+ν5 were recorded using a Bruker 120 HR interferometer with a resolution of 0.0042 and 0.0088 cm−1, respectively, and analyzed. From the fits 33 and 50, respectively, vibrational, rotational, centrifugal distortion, and resonance interaction parameters were obtained. These reproduce 668 and 497 rovibrational energies of the pairs of states ν1/ν5 and 2ν1/ν1+ν5 with experimental accuracies, rms=0.00016 and , respectively. “Local mode” behavior of the PH2 fragment is established and discussed in detail.  相似文献   

11.
The high-resolution overtone spectrum of OCS has been recorded in the region of the ν1+4ν3 and 5ν3 bands by intracavity laser absorption spectroscopy based on an optically pumped vertical external cavity surface emitting laser (VECSEL). The extremely weak ν1+4ν3 band at was found to be isolated. The 5ν3 band at is accompanied by two weaker bands at 9933.53 and assigned to the 1204-0000 and 0404-0000 bands, respectively. In addition, the 0115-0110 hot band was detected together with the extremely weak band heads of the R branch of the 020,25-020,20 hot bands. Finally, the 5ν3 band of the 16O12C34S minor isotopomer, present in natural abundance in the sample, was also observed and rotationally analyzed. Effective state parameters could be retrieved by standard band-by-band rotational fitting of the line positions, leading to a typical rms of . The observed line positions were compared to the predictions of the global model described by Rhaibi et al. [J. Mol. Spectrosc. 191 (1998) 32-44]. In general, the agreement is excellent, close to the experimental uncertainty () thus confirming the high predictive ability of this effective Hamiltonian model. Weak but significant deviations up to were, however, identified for two rotational levels of the highly excited 2,160,0 dark state, observed through a local interaction with the 0005 state. In the case of the 16O12C34S isotopomer, the predicted line wavenumbers of the 5ν3 band were globally overestimated by about . The new data have been included in the corresponding global model, leading to almost unchanged values of the molecular parameters and a statistical agreement with the experiment.  相似文献   

12.
The Fourier transform gas-phase IR spectrum of 1,2,3-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 700-1100 cm−1 spectral region. Four fundamental bands ν6(A/; 1101.8 cm−1), ν7(A/; 1038.8 cm−1), ν9(A/, 858.9 cm−1), and ν13(A//; 746.2 cm−1) have been analyzed using the Watson model in A-reduction. Two additional bands, ν8 (A/; 894.6 cm−1) and ν12(A//; 881.2 cm−1) were assigned by their weak Q-branches. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. A number of weak global and local interactions are present in the bands. The resonances identified were qualitatively explained by Coriolis type perturbations with neighboring levels. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

13.
We have measured the energies and linewidths of the pionic Kα X-rays for 20Ne and 22Ne using a natural liquid-neon target. The results are
Groundν5
μ (D)1.653 511 (29)1.658 514 (23)
α (Å3)?0.77 (32)?0.58 (48)
  相似文献   

14.
We have successfully synthesized the α-FeSex binary tetragonal superconductors with nominal composition of FeSex (x=0.6-1.0) via conventional solid state reactions between Fe and Se sealed in quartz tubes. Fe and β-FeSe are the most commonly seen impurities in this binary system. A low-temperature annealing at 400 °C is found to be crucial to remove β-FeSe, which is the thermodynamic stable phase with hexagonal symmetry. For all the samples of FeSex, superconductivity is confirmed by magnetic measurements as well as resistivity measurements with their Tc at around 8 K. We noticed that their Tc does not vary with the different nominal Se amount. High-resolution synchrotron X-ray diffraction analysis revealed that the unit cell parameters of all these samples do not change within the error range, and their structure only tolerate the same very small amount of Se deficiency. Based on this study, we concluded that the α-FeSex superconductor only exist in a very narrow deficiency range.  相似文献   

15.
Using the approach based on molecular field calculations for resonant level model; a close relationship between the two ratios γ/χ(0) and |Jm|/TK is obtained. Where γ represents the electronic contribution in the specific heat, χ(0) is the susceptibility at zero temperature, Jm is the molecular field parameter and TK is the Kondo temperature.  相似文献   

16.
The Fourier transform infrared spectrum of gaseous thiophene, C4H4S, has been recorded in the 600-1200 cm−1 spectral region with a resolution of ca. 0.0030 cm−1. Five fundamental bands ν13 (B1, 712.1 cm−1), ν7 (A1; 840.0 cm−1), ν6 (A1; 1036.4 cm−1), ν5 (A1; 1081.5 cm−1) and ν19 (B2; 1084.0 cm−1) have been analysed by the standard Watson model (A-reduction). Ground state rotational and quartic centrifugal distortion constants have been obtained from a simultaneous fit of ground state combination differences from four of these bands and previous microwave transitions. Upper state spectroscopic constants have been obtained for all five bands from single band fits using the Watson model. A strong c-Coriolis resonance perturbs the close lying ν5 and ν19 bands. We have analysed this dyad system by a model including first and second order Coriolis resonance using the theoretically predicted Coriolis coupling constant . From this analysis we locate the previously unobserved ν19 band at 1083.969 cm−1. The rotational constants, ground state quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational constants (α-constants) predicted by quantum chemical calculations using a cc-pVTZ basis with B3LYP methodology, are compared with the present experimental data, where there is generally good agreement. A complete set of anharmonic frequencies and α-constants for all fundamental levels of the molecule is given.  相似文献   

17.
18.
Methyl chloride (CH3Cl) is one of the most abundant chlorine-containing molecules in the atmosphere. For this reason a recent update was performed in HITRAN in the 640-2600 cm−1 region based on the line parameters generated in Nikitin et al. [Nikitin A, Champion JP, Bürger H. J Mol Spectrosc 2005;230:174-84] with the intensities scaled to existing experimental data. CH3Cl has a rather strong signature around 3000 cm−1 which was used recently by the Atmospheric Chemistry Experiment (ACE) satellite mission to produce the first study of the global distribution of methyl chloride in the upper troposphere and stratosphere. However, it was mentioned that the CH3Cl line positions and intensities spectroscopic parameters are of very low quality in this spectral region in the public access HITRAN or GEISA databases. We present a complete update of the line positions and line intensities for the ν1, ν4, 3ν6 bands of CH3 35Cl and CH3 37Cl in the 3.4 μm region. For this task, Fourier transform spectra have been recorded at high resolution at the Laboratoire de Dynamique, Interactions et Réactivité in France. Measurements of line positions and line intensities have been retrieved for both isotopologues 12CH3 35Cl and 12CH3 37Cl in the ν1, ν4, 3ν6 bands. The theoretical model accounts for the interactions coupling the (ν1=1; ?=0), (ν4=1; ?=±1) and (ν6=3; ?=±1) energy levels, together with additional resonances involving several dark states.  相似文献   

19.
Based on density functional theory+Udensity functional theory+U calculations and the quasi-annealing simulation method, we obtain the ground electronic state for α-Pu2O3 and present its phonon dispersion curves as well as various thermodynamic properties, which have seldom been theoretically studied because of the huge unit cell. We find that the Pu–O chemical bonding is weaker in α-Pu2O3 than in fluorite PuO2, and subsequently a frequency gap appears between oxygen and plutonium vibration density of states. Based on the calculated Helmholtz free energies at different temperatures, we further study the reaction energies for Pu oxidation, PuO2 reduction, and transformation between PuO2 and α-Pu2O3. Our reaction energy results are in agreements with available experiment. And it is revealed that high temperature and insufficient oxygen environment are in favor of the formation of α-Pu2O3.  相似文献   

20.
The 71 and 91 vibrational states of deuterated species of formic acid molecule DCOOH have been recorded by a FTIR spectrometer in the region 450- at a resolution of and a millimeter wave spectrometer. In the analysis microwave transitions from literature were used in addition to 14 835 assigned IR and 114 millimeter wave lines in the 71 and 91 vibrational states. The analysis resulted in band origins, rotational, centrifugal distortion, and eight interaction parameters of the Coriolis coupled 71 and 91 vibrational states. RMS deviation of the fit was for the IR data and the maximum values of J and Ka quantum numbers in the fit were 64, 28 and 64, 30 for 71 and 91 states, respectively.  相似文献   

20Ne22Ne
Neenergy (keV)239.12±0.14230.49±0.88
width (keV)15.43±0.4112.65±3.51
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号