首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report our analysis of resistivity data on Nd0.67Sr0.33MnO3 polycrystalline samples as a function of preparative conditions using a bond percolation model for a random mixture of metallic and insulating regions, assuming polaronic transport above and below the metal-insulator (M-I) transition temperature. Our analysis suggests that for oxygen deficient compounds the M-I transition that occurs at a lower temperature than the ferromagnetic transition arises from a percolation of the metallic regions. The temperature dependence of resistivity and thermopower suggests the existence of a bimodal distribution of conductivities.  相似文献   

2.
Ferromagnetic La0.7Sr0.3MnO3 (LSMO) and antiferromagnetic La0.33Ca0.67MnO3 (LCMO) layers were grown on SrTiO3 (STO) substrates by the pulsed laser deposition technique. LSMO films had rougher surfaces and larger grain sizes than LCMO films. Fully strained bilayers, in which each layer was as thin as 10 nm, were prepared by changing their stacking sequences, i.e. LSMO/LCMO/STO and LCMO/LSMO/STO. The former had higher TC (350 K) than the latter (300 K), and exchange bias effects were only observed in the former bilayers. This revealed that microstructures could play an important role in the transport and magnetic properties of manganese oxide thin films.  相似文献   

3.
We report a novel, low temperature (450-600 °C) route for the synthesis of highly crystalline and homogeneous nanoparticles of lanthanum calcium manganese oxide La0.67Ca0.33MnO3 (LCMO). The nanocrystallites, with average particle size of 30 nm, possess a ferromagnetic-paramagnetic transition temperature (Tc) of 300 K, which is about 50 K higher than that of a bulk single crystal. The transition temperature was found to be inversely proportional to the particle size. The Rietveld analysis of the powder X-ray diffraction data of the phase-pure nanopowders reveals that the particle size reduction leads to a significant contraction of the unit cell volume and a reduction of the unit cell anisotropy. We propose that these two lattice effects are responsible for the observed enhancement in Tc.  相似文献   

4.
La0.7Sr0.3MnO3 nanoparticles were prepared by a simple chemical coprecipitation route. Structural, magnetoresistance (MR), and magnetic properties were investigated. Rietveld refinement of X-ray powder diffraction result shows that the sample is single-phase with the space group of R3¯C. The result of field-emission scanning electronic microscopy shows that most of the grain sizes are distributed from 50 to 200 nm. The composition determined by energy-dispersive spectroscopy is the stoichiometry of La0.7Sr0.3MnO3. The ferromagnetic to paramagnetic transition is sharp with Curie temperature TC=367 K, which further confirms that the sample is single-phase. The steep change in MR at low fields is attributed to the alignment of the magnetization, while the high-field MR is due to the grain boundary effect.  相似文献   

5.
The structural, transport and electron spin resonance properties of bulk and nanosized La0.875Sr0.125MnO3 prepared by a sol-gel method have been investigated. The bulk sample has an orthorhombic structure and a ferromagnetic insulating ground state. The ESR spectra indicate the coexistence of the ferromagnetic insulating and ferromagnetic metallic phases below TC. In addition to a sharp peak in the vicinity of TC, another sharp peak close to is clearly observed in the intensity of the spectra, which may be correlated with the structural transition and orbital ordering at this temperature. For the nanosized sample, a drastically different behavior is found. With a rhombohedral structure down to 70 K, the nanosized sample shows a ferromagnetic metallic ground state. The ESR studies reveal the coexistence of the paramagnetic and ferromagnetic resonance signals. The resonance intensity shows a broad peak around 200 K, which may be due to the wide ferromagnetic transition in the nanoparticle.  相似文献   

6.
Grain size effects on magnetic and transport properties for heavily Sr-doped A-type antiferromagnetic La0.4Sr0.6MnO3 ceramics were studied. It was observed that with decrease in grain size, surface ferromagnetism could be introduced due to bond-breaking at surfaces. With decrease in grain size, the surface ferromagnetism was enhanced, and the phase transition order distinguished from the Arrott plot was a second one. The surface-induced ferromagnetism was insulating as judged from transport properties. With decrease in grain size, magnetoresistance was largely improved for both high magnetic and low magnetic fields. Under a 500 Oe magnetic field, the magnetoresistance is improved from 0.2%, 0.1%, 0.03% and 0.02% for the sample with grain size of 150 nm at 10, 100, 200 and 300 K, respectively, to 3%, 2.3%, 0.43% and 0.12% for the sample with grain size of 20 nm at 10, 100, 200 and 300 K. It was interesting to find that large magnetoresistance could be induced due to the surface ferromagnetism in A-type antiferromagnetic La0.4Sr0.6MnO3 nanoparticles, which suggested that it was possible to search for manganites with relatively high low-field magnetoresistance in nanostructured A-type antiferromagnetic materials.  相似文献   

7.
The magnetic behavior of the Sr0.3 manganite is studied using a local microprobe, 57Co. In contrast with Ca substituted manganites, a much larger fraction of the material exhibits short-range order with superparamagnetic-like behavior even at 80 K. The differences in behavior are attributed to the large mismatch between the ionic radii of La+3 and the divalent substituent Sr+2, which introduces anharmonicity in local vibrations. In common with all other compounds exhibiting negative bulk magnetoresistivity, the Sr0.3 compound also exhibits very marked softening of lattice as one approaches Tc from below. Application of an external magnetic field results in coalescing of nanosized magnetic clusters to form larger ones with better alignment of spins.  相似文献   

8.
La0.7Ca0.3MnO3:xZn0.95Co0.05O (x=0.0,0.05, 0.1, 0.15mol) composites are prepared by a sol-gel process. X- ray diffraction and energy diffraction spectroscopy reveal that there is no evidence of a reaction between the La0.7 Ca0.3 MnO3 (LCMO) and Zn0.95Co0.05 O (ZCO). Magnetization M, Curie temperature Tc and metal-insulator transition temperatures Tp are observed to decrease with increasing ZCO content. Compared with x = 0.0, a great enhancement in the magnetoresistance (MR) is observed at around Tc for x = 0.05, 0.10, 0.15. Based on the tunneling MR and percolation models, this great change of MR is well explained.  相似文献   

9.
An experimental study on the magnetic and electrical transport properties of the manganites Bi0.5Ca0.5Mn1−xCrxO3 (BCMCO) (0≤x≤0.12) is carried out. The results show that Cr doping can suppress the charge-ordering transition, favoring the ferromagnetic clusters. For x=0.12, the charge-ordering transition disappears but a very broad paramagnetic-ferromagnetic-like transition is detected at the Curie temperature TC=72.6 K. It is caused by phase separation or coexistence of the charge-ordering and ferromagnetic phase. Moreover, the critical Cr content to destroy charge ordering phase in BCMCO does not match the general monotonous tendencies shown by Cr-doped Re0.5Ca0.5MnO3 (Re-rare-earth). These differences are ascribed to the fact that the ground state in BCMCO differs markedly from the ferromagnetic metallic phase in Cr-doped Re0.5Ca0.5MnO3 compounds.  相似文献   

10.
Using a co-precipitation method, perovskite-type manganese oxide La0.7Sr0.3MnO3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ≈2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La0.7Sr0.3MnO3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K.  相似文献   

11.
The electronic transport behavior of La0.67Sr0.33MnO3 epitaxial thin films with different thicknesses has been investigated under various applied DC currents. The 20 and 70 nm thick films show a giant negative electroresistance (ER). In contrast, the films with 100 nm thickness show unusual giant positive ER, which can reach 30% with the current density of 1.8×108 A/cm2 at room temperature. It is interesting that the electric current can also change the magnetoresistance of the films. The results were explained by considering the spin polarized current induced increase of ferromagnetic metallic phase and current-induced lattice distortion via electron wind force under high current density.  相似文献   

12.
Systematic studies of X-ray, magnetic, electronic transport, and elastic properties have been performed on polycrystalline Bi0.5Ca0.4Sr0.1MnO3 sample. The sample exhibits charge ordering (CO) state below TCO (=304 K), accompanied by a distinct maximum in magnetization. The softening of Young's modulus in the vicinity of TCO indicates that there is a strong coupling of electron-phonon due to Jahn-Teller (JT) effect. The dynamic ferromagnetic spin correlations are observed at high temperatures above TCO, which are replaced by antiferromagnetic (AFM) spin fluctuations at a concomitant CO transition. Below 32 K, a spin-glass (SG) state dominates at low temperatures. The voltage-current (V-I) characteristics measurement results indicate that the non-linear conduction starts above a threshold current, giving rise to a region of negative differential resistance (NDR). The origin of the non-linear conduction is discussed in view of current induced collapse of CO state associated with phase-separation mechanism.  相似文献   

13.
Spinel ferrite NiFe2O4 nanoparticles (?25 nm) in SiO2 matrix were prepared by sol–gel method. The phase and average crystallite size of the samples were determined by X-ray diffraction method and the particle size distributions were studied by a transmission electron microscope. Magnetic properties of the samples were investigated with different ferrite particle sizes and at various temperatures down to 10 K. Superparamagnetic properties were observed at room temperature when the particle size is less than 10 nm.In superparamagnetic state, the field dependence of magnetization follows Langevin function which was originally developed for paramagnetism. The effective anisotropy constant Keff is found to increase significantly with the decrease in particle volume and an order of magnitude higher than that of the bulk samples when the particle size is below 5 nm due to the dominance of surface anisotropy. In case of nanosized systems, the effect of size reduction on the law of approach to saturation has also been studied in detail.  相似文献   

14.
In this work we analyse systematically how morphological and magnetotransport properties of manganite thin films are affected by the damage induced by focused ion beam (FIB) irradiation. We irradiate different areas of the same sample with doses ranging from 5×1012 to 3×1017 ions/cm2 and we find that the film becomes swollen for doses up to 1016 ions/cm2 and is eventually eroded by ion milling for further irradiation. On the other hand, transport properties are much more sensitive to FIB irradiation: the metal–insulator transition temperature is found to decrease monotonically with increasing doses up to 1.8×1013 ions/cm2. At doses higher than 5.6×1013 ions/cm2 the metallic state is completely suppressed and likely, also ferromagnetism.  相似文献   

15.
The electrical and magnetoresistant properties of La0.67(Ca0.65Ba0.35)0.33MnO3/Agx (abbreviated by LCBMO/Agx) have been studied. The results show that Ag addition causes a decrease of resistivity dramatically and especially induces a large enhancement of room temperature magnetoresistance (MR). The room temperature MR ratio for x=0.27 sample in 10 kOe magnetic field is 41%, almost 20 times larger than that for x=0 sample. This enhancement is related to that the Curie temperature (Tc) of the sample is near room temperature, as well as the significant reduction of resistivity. The good fits of experimental results for x=0.27 sample to Brillouin function indicate that the MR behavior in the Ag added LCBMO is induced by the spin-dependent hopping of the electrons between the spin clusters, which is an intrinsic property of the CMR materials.  相似文献   

16.
The electroresistance (ER) of La0.67Ca0.33MnO3 (LCMO) epitaxial thin films with different thicknesses was studied. For the 110 nm thick LCMO film, its ER shows a maximum at Tp, where the resistance shows a peak, and decreases to zero at lower temperatures. While for the 30 nm thick LCMO film, its ER is remarkable in a wide temperature range. Another interesting observation in this work is that the electric current can tune the magnetoresistance of the ultrathin LCMO thin film. The results were discussed by considering the coexistence of ferromagnetic metallic phase with the charge ordered phase, and the variation of the phase separation with film thickness and electric current. This work also demonstrates that electric current can tune the magnetoresistance of the manganites, which is helpful for their applications.  相似文献   

17.
We report the results of the temperature-dependent neutron diffraction measurements on the nearly half-doped (La0.325Tb0.125)(Ca0.3Sr0.25)MnO3 manganite sample. The simultaneous doping of magnetic Tb3+ and divalent Sr2+ in the La0.7Ca0.3MnO3 system results into a large A-site size disorder. Rietveld refinement of neutron diffraction data reveal that the single phase sample crystallizes in a distorted orthorhombic structure. Increased 〈rA〉 value affects the transport behavior that results into an insulating-like behavior of the sample. Under application of 1 T field sample exhibit insulating-like behavior while insulator-metal transition (TIM) is exhibited under 5 and 8 T fields. Variable range hoping (VRH) mechanism of charge carriers is exhibited in the insulating region. Field cooled and zero field cooled magnetization measurement shows the Curie temperature (TC)~47 K. The refinement of the ND data collected at various temperatures below 300 K shows that there is no structural phase transition in the compound. Around 100 K, a magnetic peak appears at lower angle that can be ascribed to the presence of the A-type antiferromagnetic (AFM) phase. Two more peaks are observed around 50 K at lower angles that can be fitted in CE-type antiferromagnetic phase. Splitting of the peaks at lower temperatures is the signature of orbital ordering in the presently studied nearly half-doped manganite system. Results of the detailed structural analysis of the temperature-dependent ND measurements on (LaTb)0.45(CaSr)0.55MnO3 sample has been discussed in the light of coexisting A-type and CE-type antiferromagnetic phases present in the sample at low temperature.  相似文献   

18.
The value of the effective magnetic anisotropy constant of the ferrimagnetic nanoparticles Zn0.15Ni0.85Fe2O4 embedded in a SiO2 silica matrix, determined through ferromagnetic resonance (FMR), is much higher than the magnetocrystalline anisotropy constant. The higher value of the anisotropy constant is due to the existence of surface anisotropy. However, even if the magnetic anisotropy is high, the ferrimagnetic nanoparticles with a 15% concentration, which are isolated in a SiO2 matrix, display a superparamagnetic (SPM) behavior at room temperature and at a frequency of the magnetization field equal to 50 Hz. The FMR spectrum of the novel nanocomposite (Zn0.15Ni0.85Fe2O4)0.15/(SiO2)0.85, recorded at room temperature and a frequency of 9.060 GHz, is observed at a resonance field (B0r) of 0.2285 T, which is substantially lower than the field corresponding to free electron resonance (ESR) (0.3236 T). Apart from the line corresponding to the resonance of the nanoparticle system, the spectrum also contains an additional weaker line, identified for a resonance field of ∼0.12 T, which is appreciably lower than B0r. This line was attributed to magnetic ions complex that is in a disordered structure in the layer that has an average thickness of 1.4 nm, this layer being situated on the surface of the Zn0.15Ni0.85Fe2O4 nanoparticles that have a mean magnetic diameter of 8.9 nm.  相似文献   

19.
The electrical transport and magnetic properties of high Bi doped (La0.73Bi0.27)0.67Ca0.33MnO3 are studied at the temperature and magnetic field ranges from 10 to 300 K and 0 to 3 T. Significant temperature and magnetic field hystereses are observed in both resistivity and magnetization measurements. Meanwhile, an enhanced magnetoresistance effect, within a wide temperature window, is obtained in the (La0.73Bi0.27)0.67Ca0.33MnO3. The hysteresis and enhanced magnetoresistance are discussed based on an inhomogeneous metastable structure related to the Bi dopant.  相似文献   

20.
The electrical and magnetic transport properties of the La0.67−xEuxCa0.33MnO3 system exhibit lowering of insulator to metal and paramagnetic to ferromagnetic transition temperature (TC) with the increase of Eu concentration in addition to possessing CMR property. The temperature variation of electrical resistivity and magnetic susceptibility for x=0.21 is found to have two distinct regions in the paramagnetic state for T>TP; one with the localization of lattice polaron in the high-temperature region (T>1.5TP) satisfying the dynamics of variable range hopping (VRH) model and the other being the combination of the spin and lattice polarons in the region TP<T<1.5TP. The resistivity variation with temperature and magnetic field, the cusp in the resistivity peak and CMR phenomenon are interpreted in terms of coexistence of spin and lattice small polarons in the intermediate region (TP<T<1.5TP). The spin polaron energy in the La0.46Eu0.21Ca0.33MnO3 system is estimated to be 106.73±0.90 meV and this energy decreases with the increase of external magnetic field. The MR ratio is maximal with a value of 99.99% around the transition temperature and this maximum persists till T→0 K, at the field of 8 T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号