首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The effects of annealing prior to cold rolling on the microstructure, magnetic and mechanical properties of low-C grain non-oriented (GNO) electrical steels have been investigated. The grain structure of hot-rolled electrical steel strips is modified by annealing at temperatures between 700 and 1050 °C. Annealing at temperatures less than the ferrite to austenite+ferrite transformation temperature on heating (Ac1) causes a marginal effect on the grain size. However, annealing in the intercritical region at temperatures between Ac1 and Ac3 (the ferrite+austenite to austenite transformation temperature on heating) causes rapid decarburization and development of large columnar ferrite grains free of carbide particles. This microstructure leads, after cold rolling and a fast annealing treatment, to carbide free, large ferrite grain microstructures with magnetic and mechanical properties superior to those observed typically in the same steel in the industrially fully processed condition. These results are attributed to the increment in grain size and to the {1 0 0} fiber texture developed during the final annealing at temperatures up to 850 °C. Annealing at higher temperatures, T>Ac3, results in a strong {1 1 1} fiber texture and an increase of the quantity of second phase particles present in the microstructure, which lead to a negative effect on the final properties. The results suggest that annealing prior to cold rolling offers an attractive alternative processing route for the manufacture of fully processed low C GNO electrical steels strips.  相似文献   

2.
Ta (100 nm)/NdFeB (5 μm)/Ta (100 nm) films have been deposited onto Si substrates using triode sputtering (deposition rate ∼18 μm/h). A 2-step procedure was used: deposition at temperatures up to 400 °C followed by ex-situ annealing at higher temperatures. Post-deposition annealing temperatures above 650 °C are needed to develop high values of coercivity. The duration of the annealing time is more critical in anisotropic samples deposited onto heated substrates than in isotropic samples deposited at lower temperatures. For a given set of annealing conditions (750 °C/10′), high heating rates (?2000 °C/h) favour high coercivity in both isotropic and anisotropic films. The shape and size of Nd2Fe14B grains depend strongly on the heating rate.  相似文献   

3.
The domain structure of a magnetostrictive Fe40Ni38Mo4B18 amorphous ribbon has been studied using magnetic force microscopy (MFM) at room temperature. First, the evolution of the magnetic domain patterns as a function of the annealing temperature has been investigated. In samples heat treated at 250 and 450 °C for 1 h, a transformation from 90° to 180° domain wall has been clearly observed, while the sample heat treated at 700 °C for 1 h showed a magnetic phase fixed by the crystalline anisotropy. Additionally, the evolution of the magnetic domain structure by applying a DC current was recorded by the MFM technique. For current annealed samples at 1 A for 1, 30 and 60 min, a transformation between different domain patterns has been observed. Finally, in samples treated by the current annealing method under simultaneous stress, an increase of the annealing time gives rise to a different magnetic structure arising from the development of transverse magnetic anisotropy.  相似文献   

4.
The evolution of the magnetic phase upon aging at 300–520 °C in a heavily cold-drawn AISI 316L austenitic stainless steel fiber was studied using thermomagnetic analysis (TMA) and magnetic force microscopy with a heating stage. An increasing trend of magnetization from 50 °C to around 470 °C in the heating curves of TMA in austenitic stainless steels after a cold-drawing process was observed. No significant Ms temperature signal in the TMA curve at cooling indicated an increase in magnetization upon cooling period without significant phase transformation. A series of in situ magnetic force microscopy observations reveal a growth of the magnetic domain structure after aging at 300 °C for 2.5 h. Results show that the ferromagnetic increase during aging at lower annealing temperature resulted from the growth of martensite.  相似文献   

5.
The magnetic properties of annealed Fe-Pt multilayer thin films with a broad composition range were investigated in order to identify the effects of composition and annealing temperature on the achievable coercive field, and to identify its maximum at low processing temperatures. Two types of multilayer systems were deposited as materials libraries to vary the composition from Fe20Pt80 to Fe75Pt25. The first type of multilayer was comprised of alternating opposing wedges, whereas the second type consisted of repeated uniform Fe and Pt layers interspersed periodically with Fe wedge layers. It was found that coercive fields μ0HC > 0.7 T can be achieved at an annealing temperature of about 300 °C (60 min) for both types of multilayers as long as the composition is close to 50:50. Higher annealing temperatures are needed for films, which deviate from this composition. Increasing the annealing temperature up to 700 °C leads to increased coercivity values. Multilayers with additional Fe layers showed increased remanence but reduced coercive fields.  相似文献   

6.
To compare the annealing effects on GaMnAs-doped with Zn (GaMnAs:Zn) and undoped GaMnAs (u-GaMnAs) epilayers, we grew GaMnAs thin films at 200 °C by molecular beam epitaxy (MBE) on GaAs substrates, and they were annealed at temperatures ranging from 220 °C to 380 °C for 100 min in air. These epilayers were characterized by high-resolution X-ray diffraction (XRD), electrical, and magnetic measurements. A maximum resistivity at temperatures Tm close to the Curie temperatures Tc was observed from the measurement of the temperature-dependent resistivity ρ(T) for both the GaMnAs:Zn and the u-GaMnAs samples. We found, however, that the maximum temperature Tm observed for GaMnAs:Zn epilayers increased with increasing annealing temperature, which was different from the result with the u-GaMnAs epilayers. The formation of GaAs:Zn and MnAs or Mn-Zn-As complexes with increasing annealing temperature is most likely responsible for the differences in appearance.  相似文献   

7.
Fe50Co50 thin films with thickness of 30 and 4 nm have been produced by rf sputtering on glass substrates, and their surface has been observed with atomic force microscopy (AFM) and magnetic force microscopy (MFM); MFM images reveal a non-null component of the magnetization perpendicular to the film plane. Selected samples have been annealed in vacuum at temperatures of 300 and 350 °C for times between 20 and 120 min, under a static magnetic field of 100 Oe. DC hysteresis loops have been measured with an alternating gradient force magnetometer (AGFM) along the direction of the field applied during annealing and orthogonally to it. Samples with a thickness of 4 nm display lower coercive fields with respect to the 30 nm thick ones. Longer annealing times affect the development of a harder magnetic phase more oriented off the film plane. The field applied during annealing induces a moderate magnetic anisotropy only on 30 nm thick films.  相似文献   

8.
The L10 ordered FePt films have been prepared at 300 °C with a basic structure of CrRu/MgO/FePt, followed by a post-annealing process at temperatures from 200 to 350 °C. The magnetic properties and the microstructure of the films were investigated. It is found that coercivity of FePt films increases greatly from 3.57 to 9.1 kOe with the increasing annealing temperature from 200 to 350 °C. The loop slope of the M–H curves decreases with the increasing annealing temperature, which is due to the grain isolation induced by MgO underlayer diffusion during the annealing process. The underlayer diffusion could be a useful approach to prepare the FePt-based composite films for high-density recording media.  相似文献   

9.
A permanent magnetic macrosphere (diameter: 5 mm) spherically seated in an oil bearing inside an experimental capsule (comparable to a hard gelatine capsule size 2) is turned by a rotating magnetic field (H ? 5 kA/m; frequency ν?500 Hz) and causes a temperature rise up to about 60 °C. In order to find further possible improvements, the experimental results were compared to theoretical expectations. First experiments using improved thermal isolation yielded temperatures of about 100 °C. The heating can be used as a mechanism to remotely release drugs in the gastrointestinal tract.  相似文献   

10.
The effects of high magnetic field (10 T) on the products obtained by calcination of Co-Fe LDH precursors at different temperatures were investigated. The XRD results indicated that FeIII substituted for CoIII in Co3O4 to yield CoIICoIIIFeIIIO4 under the calcination of Co-Fe LDH precursors at 400 °C. The products obtained by magnetic field annealing at 400 °C had a porous plate-like morphology, whereas the products without magnetic field annealing were composed of nanoparticles. It was seen that CoFe2O4 phase could be formed at low temperature (about 500 °C) under the magnetic field annealing. The grain size of products obtained by magnetic field annealing at 800 °C was larger than that of zero magnetic field. It was found that the saturation magnetization was significantly enhanced after magnetic field annealing, especially at lower temperature (≤600 °C). The possible reason for the effects on the microstructure and magnetic properties of products obtained by magnetic field annealing was discussed.  相似文献   

11.
At room temperature deposited Ge films (thickness < 3 nm) homogeneously wet CaF2/Si(1 1 1). The films are crystalline but exhibit granular structure. The grain size decreases with increasing film thickness. The quality of the homogeneous films is improved by annealing up to 200 °C. Ge films break up into islands if higher annealing temperatures are used as demonstrated combining spot profile analysis low energy electron diffraction (SPA-LEED) with auger electron spectroscopy (AES). Annealing up to 600 °C reduces the lateral size of the Ge islands while the surface fraction covered by Ge islands is constant. The CaF2 film is decomposed if higher annealing temperatures are used. This effect is probably due to the formation of GeFx complexes which desorb at these temperatures.  相似文献   

12.
Magnetic properties and microstructure of Cr-implanted Si have been investigated by alternating gradient magnetometer (AGM), superconducting quantum interference device (SQUID) magnetometer, and transmission electron microscopy (TEM). p-Type (1 0 0) Si wafers were implanted at 200 keV at room temperature with a dosage of 1 × 1016 cm−2 Cr ions and then annealed at 600-900 °C for 5 min. The effect of annealing on the structure and magnetic properties of Cr-implanted Si is studied. The as-implanted sample shows a square M-H loop at low temperature. Magnetic signal becomes weaker after short time annealing of the as-implanted sample at 600 °C, 700 °C, and 800 °C. However, the 900 °C annealed sample exhibits large saturation magnetization at room temperature. TEM images reveal that the implanting process caused amorphization of Si, while annealing at 900 °C led to partial recovery of the crystal. The enhancement of saturation magnetization can be explained by the redistribution and accumulation of Cr atoms in the vacancy-rich region of Si during annealing.  相似文献   

13.
High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayer (ML) up to 600 °C have been studied and reported in this paper. Ti/Ni multilayer samples having constant layer thicknesses of 50 Å each are deposited on float glass and Si(1 1 1) substrates using electron-beam evaporation technique under ultra-high vacuum (UHV) conditions at room temperatures. The micro-structural parameters and their evolution with temperature for as-deposited as well as annealed multilayer samples up to 600 °C in a step of 100 °C for 1 h are determined by using X-ray diffraction (XRD) and grazing incidence X-ray reflectivity techniques. The X-ray diffraction pattern recorded at 300 °C annealed multilayer sample shows interesting structural transformation (from crystalline to amorphous) because of the solid-state reaction (SSR) and subsequent re-crystallization at higher temperatures of annealing, particularly at ≥400 °C due to the formation of TiNi3 and Ti2Ni alloy phases. Sample quality and surface morphology are examined by using atomic force microscopy (AFM) technique for both as-deposited as well as annealed multilayer samples. In addition to this, a temperature dependent dc resistivity measurement is also used to study the structural transformation and subsequent alloy phase formation due to annealing treatment. The corresponding magnetization behavior of multilayer samples after each stage of annealing has been investigated by using Magneto-Optical Kerr Effect (MOKE) technique and results are interpreted in terms of observed micro-structural changes.  相似文献   

14.
Series of [FePt(4min)/Fe(tFe)]10 multilayers have been prepared by RF magnetron sputtering and post-annealing in order to optimize their magnetic properties by structural designs. The structure, surface morphology, composition and magnetic properties of the deposited films have been characterized by X-ray diffractometer (XRD), Rutherford backscattering (RBS), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX) and vibrating sample magnetometer (VSM). It is found that after annealing at temperatures above 500 °C, FePt phase undergoes a phase transition from disordered FCC to ordered FCT structure, and becomes a hard magnetic phase. X-ray diffraction studies on the series of [FePt/Fe]n multilayer with varying Fe layer thickness annealed at 500 and 600 °C show that lattice constants change with Fe layer thickness and annealing temperature. Both lattice constants a and c are smaller than those of standard ones, and lattice constant a decreases as Fe layer deposition time increases. Only a slight increase in grain size was observed as Fe layer decreased in samples annealed at 500 °C. However, the increase in grain size is large in samples annealed at 600 °C. The coercivities of [FePt/Fe]n multilayers decrease with Fe layer deposition time, and the energy product (BH)max reaches a maximum in the samples with Fe layer deposition time of 3 min. Comparison of magnetic properties with structure showed an almost linear relationship between the lattice constant a and the coercivities of the FePt phase.  相似文献   

15.
The magnetic properties and the annealing process of Fe78Zr7B15 amorphous ribbons are investigated by X-ray diffraction (XRD), differential scanning calorimetry, and vibrating sample magnetometer. The fully amorphous structure of the as-quenched ribbons is confirmed by the XRD pattern. The Curie temperature and the saturation magnetization Ms of the ribbons are 305 °C and 124.3 emu/g, respectively. Annealing at 550 °C can result in an increase in Ms with annealing time due to the increasing crystallized volume fraction of α-Fe phase. The optimized annealing process is established at 550 °C for 20-30 min with maximum Ms of 146.6 emu/g. The morphology of the ribbons annealed at 550 °C is observed by scanning electron microscopy, showing that nanocrystalline α-Fe grains are dispersed in an amorphous matrix.  相似文献   

16.
Magnetic microstructures of a high coercivity Nd-Fe-B sintered magnet in remanent and incomplete thermal demagnetization states have been revealed by using magnetic force microscopy (MFM) with high coercivity tips. MFM results indicate that specimens in a remanent state are single domain and their magnetizations align with the direction of the magnetizing field. The evolution of the magnetic domains with annealing temperatures shows that the thermal demagnetization process consists of four stages. Nd-Fe-B should be heat-treated at about 120-170 °C to make its magnetic state stable before practical applications.  相似文献   

17.
Relationship between magnetic anisotropy field Hk and thermal processes during the preparation has been studied for FeCoB thin films. The FeCoB films deposited on the glass substrates by facing targets sputtering successfully showed strong magnetic anisotropy when the substrate was heated at the substrate temperature Ts above 100 °C. Additionally, the lattice spacing of FeCo(1 1 0) in the perpendicular direction was found to decrease depending on the substrate temperature Ts. Among various temperature histories, the heating processes with a phase of increasing Ts revealed the further improvement of Hk. Meanwhile, high Hk in the films disappears after the post-deposition annealing at the temperature above 400 °C.  相似文献   

18.
The (γ′-Fe4N/Si-N)n (n: number of layers) multilayer films and γ′-Fe4N single layer film synthesized on Si (1 0 0) substrates by direct current magnetron sputtering were annealed at different temperatures. The structures and magnetic properties of as-deposited films and films annealed at different temperatures were characterized using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The results showed that the insertion of Si-N layer had a significant influence on the structures and magnetic properties of γ′-Fe4N film. Without the addition of Si-N lamination, the iron nitride γ′-Fe4N tended to transform to α-Fe when annealed at the temperatures over 300 °C. However, the phase transition from γ′-Fe4N to ?-Fe3N occurred at annealing temperature of 300 °C for the multilayer films. Furthermore, with increasing annealing temperature up to 400 °C or above, ?-Fe3N transformed back into γ′-Fe4N. The magnetic investigations indicated that coercivity of magnetic phase γ′-Fe4N for as-deposited films decreased from 152 Oe (for single layer) to 57.23 Oe with increasing n up to 30. For the annealed multilayer films, the coercivity values decreased with increasing annealing temperature, except that the film annealed at 300 °C due to the appearance of phase ?-Fe3N.  相似文献   

19.
CoPt-TiO2 nanocomposite films were synthesized by rapid thermal annealing of CoPt/TiO2 multilayers. The effects of annealing temperature, annealing time, Ag addition and TiO2 volume fraction on the microstructures and magnetic properties of the CoPt-TiO2 nanocomposite films were studied. Results showed that the ordering degree of CoPt and coercivity of CoPt-TiO2 nanocomposites increased with annealing temperature. Increasing annealing time and Ag addition were able to increase the ordering degree and coercivity of CoPt. However, complete L10-ordering of CoPt at 550 °C annealing was not realized by increasing annealing time up to 30 min and Ag addition up to 30 vol.%. Increasing TiO2 volume fraction at 700 °C annealing did not lead to the change of ordering of CoPt. However, the grain structure of the films changed slightly when TiO2 volume fraction was larger than 56%. The coercivity of the film decreased slightly with the addition of TiO2.  相似文献   

20.
The effectiveness of nanoscale Dy2Fe14B thin films on coercivity and energy product of melt-spun ribbons of Nd2Fe14B at high temperatures was investigated. It is hypothesized that the nanoscale Dy-thin film will act as an obstacle for the nucleation of reverse domains and also maximize the energy of domain walls and thereby improve the magnetic performance at high temperatures. Pulsed laser deposition (PLD) of amorphous Dy2Fe14B layers on Nd2Fe14B melt-spun ribbons was performed for a nominal thickness of 40 nm. The coated ribbons were then annealed in environmentally controlled quartz furnace at two different cycles (750 °C for 15 min and 900 °C for 2 h) to cause crystallization. Magnetic hysteresis tests conducted at 300 and 400 K revealed that there is small but consistent improvement in the magnetic properties of the coated ribbons annealed at 750 °C for 15 min. However, higher temperature annealing (900 °C for 2 h) drastically reduced the magnetic properties. The incomplete recrystallization of amorphous structure at 750 °C for 15 min and large grain growth and formation of non-magnetic phases at 900 °C for 2 h are believed to be responsible for not meeting the expected magnetic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号