首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation experimentally studies the low-frequency alternating-current magnetic susceptibility (χac) of amorphous and nanocrystalline CoFeB films by measuring the magnetic field established by passing currents of various frequencies through such films of various thicknesses (tf). A CoFeB film is sputtered onto a glass substrate with tf from 100 Å to 500 Å under the following conditions: (a) As-deposited films were maintained at room temperature (RT) and (b) films were post-annealed at TA=150 °C for 1 h. The samples thus obtained are analyzed in a magnetic field that was generated by an alternating current (AC) at various frequencies from 10 Hz to 25,000 Hz. The experimental results demonstrate that the χac declines as the thickness of the as-deposited sample and the post-annealed sample (TA=150 °C) increases because the lower coercivity (Hc) of thinner CoFeB films is similar to a soft magnetic characteristic and is associated with a higher χac value. The best χac value is obtained at a thickness of 100 Å under both conditions. The χac value of the post-annealed sample exceeds that of the RT sample at thicknesses from 100 Å to 500 Å because the magneto crystalline anisotropy of the post-annealed sample yields the highest χac value at the optimal resonance frequency (fres), at which the spin sensitivity is maximal. The X-ray diffraction patterns (XRD) of as-deposited CoFeB films reveal their amorphous structure. The XRD results for the post-annealed films include a main peak at 2θ=44.7° from the body-centered cubic (BCC) nanocrystalline CoFe that indicated a (110) textured structure. Post-annealing treatment caused that the amorphous structure to become more crystalline by a thermally driven process, such that the χac value of the post-annealed sample exceeded that of the RT sample. This experimental result demonstrates that the χac value decreased as the thickness of the thin film increased. Finally, the CoFeB thin films had the best χac at low frequency (<50 Hz) following post-annealing treatment. The results obtained under the two conditions indicate that the maximum χac value and the optimal fres of a 100 Å-thick CoFeB thin film were 1.6 and 30 Hz, respectively, following post-annealing at TA=150 °C for 1 h, suggesting that a 100 Å-thick CoFeB thin film that has been post-annealed at TA=150 °C can be utilized as a gage sensor and in transformer applications at low frequencies.  相似文献   

2.
闫羽  许淑伟  金汉民  杜晓波  苏峰 《中国物理》2004,13(11):1965-1968
The magnetization curves along the crystal axes for Gd_2Fe_{17} and Gd_2Fe_{17}H_3 were analysed based on the single-ion model. If the Gd-Fe exchange interaction has been taken as isotropic as usual, the fitted values of magneto-crystalline anisotropy of the Fe sublattices in Gd_2Fe_{17} and Gd_2Fe_{17}H_3 would become unreasonably different from those of the corresponding Y or Lu compounds. It was shown that the large difference is caused by the neglect of the anisotropy of the Gd-Fe exchange interaction.  相似文献   

3.
We report on the BCC to FCC/HCP structural transformation of Co70Fe30 alloy produced by room temperature ion irradiation of Co70Fe30/Cu discontinuous multilayers. The structural changes were analyzed by X-ray diffraction and X-ray absorption spectroscopy. For this study, two different samples were examined, one irradiated with 50 keV He+ and another with 600 keV Kr+ with doses of 1×1017 and 3×1015 ions/cm2, respectively. No substantial change is observed after He+ irradiation, while after Kr+ irradiation an unexpected structural transition from BCC to FCC/HCP closed packed of the Co70Fe30 alloy was found.  相似文献   

4.
Exchange-biased bilayers are widely used in the pinned layers of spintronic devices. While magnetic field annealing (MFA) was routinely engaged during the fabrication of these devices, the annealing effect of NiO/CoFe bilayers is not yet reported. In this paper, the transition from NiO/Co90Fe10 bilayer to nanocomposite single layer was observed through rapid thermal annealing at different temperatures under magnetic field. The as-deposited and low-temperature (<623 K) annealed samples had rock salt (NiO) and face center cubic (Co90Fe10) structures. On the other hand, annealing at 623 K and 673 K resulted in nanocomposite single layers composed of oxides (matrix) and alloys (precipitate), due to grain boundary oxidization and strong interdiffusion in the NiO/CoFe and CoFe/SiO2 interfaces. The structural transition was accompanied by the reduction of grain sizes, re-ordering of crystallites, incensement of roughness, and reduction of Ni2+. When measured at room temperature, the bilayers exhibited soft magnetism with small room-temperature coercivity. The nanocomposite layers exhibited an enhanced coercivity due to the changes in the magnetization reversal mechanism by pinning from the oxides. At 10 K, the increased antiferromagnetic anisotropy in the NiO resulted in enhanced coercivity and exchange bias in the bilayers. The nanocomposites exhibited weaker exchange bias compared with the bilayers due to frustrated interfacial spins. This investigation on how the magnetic properties of exchange-biased bilayers are influenced by magnetic RTA provides insights into controlling the magnetization reversal properties of thin films.  相似文献   

5.
刘晓旭  赵兴涛  张颖  朱岩  吴光恒 《物理学报》2012,61(13):137503-137503
利用直流电化学沉积法, 在多孔阳极氧化铝模板中首次制备出了具有[220]取向的单晶 面心立方结构的CoCu固溶体合金纳米线阵列, 其Co含量高达70%.透射电子显微镜显示纳米线均匀连续, 具有较高的长径比, 约为300. 磁性测量表明所制备的Co70Cu30 合金纳米线具有超高的矫顽力Hc//=2438 Oe(1 Oe=79.5775 A/m)和较高的矩形比S//=0.76, 远高于以往报道的CoCu合金纳米线的磁性, 分析表明磁性好的主要原因是由于较高Co含量和高形状各向异性. 通过磁性测量和模型计算, 得到Co70Cu30 合金纳米线阵列在反磁化过程中遵从对称扇型转动的球链模型, 并从结构的角度分析了Co70Cu30合金纳米线阵列的反磁化行为.  相似文献   

6.
Core-shell Co(1−x)NixFe2O4/polyaniline nanoparticles, where the core was Co(1−x)NixFe2O4 and the shell was polyaniline, were prepared by the combination of sol-gel process and in-situ polymerization methods. Nanoparticles were investigated by Fourier transform spectrometer, X-ray diffraction diffractometer, Scanning electron microscope, Differential thermal analysis and Superconductor quantum interference device. The results showed that the saturation magnetization of pure Co(1−x)NixFe2O4 nanoparticles were 57.57 emu/g, but Co(1−x)NixFe2O4/polyaniline composites were 37.36 emu/g. It was attributed to the lower content (15 wt%), smaller size and their uneven distribution of Co(1−x)NixFe2O4 nanoparticles in the final microsphere composites. Both Co(1−x)NixFe2O4 and PANI/Co(1−x)NixFe2O4 showed superparamagnetism.  相似文献   

7.
In this paper the values of the crystalline-electric-field parameters Anm for R2Fe17 and R2Fe17H3 (R=Tb,Ho,Er) are evaluated by fitting calculations to the magnetization curves measured on the single crystal at several temperatures. The fitted Anm for R2Fe17 are strikingly different from those for the corresponding R2Fe17H3. The energy gaps between the lowest four energy levels for Ho ions in Ho2Fe172 can be reproduced by using the fitted Anm and exchange field 2μBHex, which estimated from the fit of the temperature dependence of the spontaneous magnetization combined with inelastic neutron scattering experiment.  相似文献   

8.
A controlled modulation of magnetic properties through the inverse piezoelectric (PE) effect was investigated by means of the magneto-optical Kerr effect magnetometry in a periodic array of ferromagnetic (FM) Co50Fe50 stripes patterned on a commercial PE substrate. The coercive field (Hc)(Hc) rise (up to 80% in virgin cycle and 25% in subsequent cycles) when a DC electric field (up to 75 kV/cm) is applied on the PE substrate manifests a magnetoelectric coupling between the PE substrate and adjacent FM layer. The electric field dependence of HcHc resembles the shear strain response to electric field of the PE constituent. The differences in the hysteresis loops shape when the magnetic field is oriented parallel and perpendicular to the stripes, reveal the interplay of the shape and stress anisotropy of the ferromagnet. Besides the inherent difficulties on constructing, an epitaxial hybrid system is a promising candidate of future random access memories designation.  相似文献   

9.
We have investigated the structure of Co2MnSi/MgO/Co2MnSi magnetic tunneling junctions with different tunnel magnetoresistance values depending on the in situ annealing temperatures just after the deposition of the upper Co2MnSi electrodes. The nano-beam diffraction patterns indicated that the degree of order of the upper Co2MnSi electrode annealed at 550 °C was higher than that of an electrode annealed at 400 °C. Moreover, the degree of the L21 order of the upper Co2MnSi electrode annealed at 550 °C was even lower than that of the lower Co2MnSi electrode annealed at an almost equal temperature of 600 °C. Atomic-scale observation using a high-angle annular dark-field (HAADF) method distinctly showed the existence of the L21-ordered regions in the B2-ordered matrix in the upper Co2MnSi electrode annealed at 400 °C.  相似文献   

10.
11.
The exchange interactions (JBB and JAB are the intra and the inter-sublattice exchange interactions between neighbouring spins, respectively) are obtained by using the general expressions of canting angle and critical temperature obtained by mean field theory of Li0.5Fe2.5−2xAlxCrxO4. The expression of magnetic energy of Li0.5Fe2.5−2xAlxCrxO4 is obtained for different spin configurations and dilution x. The saturation magnetisation of Li0.5Fe2.5-2xAlxCrxO4 is obtained with different values of dilution x. The magnetic phase diagram of Li0.5Fe2.5-2xAlxCrxO4 materials is obtained by high temperature series expansions (HTSEs). The critical exponent associated with the magnetic susceptibility of Li0.5Fe2.5−2xAlxCrxO4 is deduced.  相似文献   

12.
Nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2Fe2O4) have been prepared by the sol–gel process. The nanocomposite ferrite are formed when the calcining temperature is above 800 °C. It is found that the magnetic properties strongly depend on the presintering treatment and calcining temperature. The “bee waist” type hysteresis loops for samples disappear when the presintering temperature is 400 °C and the calcination temperature reaches 1100 °C owing to the exchange-coupling interaction. The remanence of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite with the mass ratio of 5:1 is higher than a single phase ferrite. The specific saturation magnetization, remanence magnetization and coercivity are 63 emu/g, 36 emu/g and 2750 G, respectively. The exchange-coupling interaction in the BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite is discussed.  相似文献   

13.
Magnetic properties and exchange-coupling interactions of diluted magnetic spinels A1−xA′xB2X4, where A and B are magnetic ions, namely Co1−xMgxFe2O4, were investigated using the high-temperature series expansion method (HTSE) and the distribution method of magnetic cations in the range 0≤x≤1. The magnetic phase diagram and transition temperature versus dilution x were determined using the Padé approximants method along with HTSE. The critical exponent associated with the magnetic susceptibility γ was then deduced. The obtained results are in good agreement with experimental results and critical exponent values are consistent with those suggested by the universality hypothesis.  相似文献   

14.
We report radio-frequency (rf) electrodynamics in polycrystalline La0.67Ba0.23Ca0.1MnO3 as a function of temperature and magnetic field using a home-built LC resonant circuit powered by an integrated chip oscillator. The resonance frequency (fr) of the oscillator and the power (P) absorbed by the sample are measured simultaneously. The paramagnetic to ferromagnetic phase transition in the absence of an external magnetic field is accompanied by a rapid decrease in both P and fr around the Curie temperature TC=300 K. However, much below TC, the fr shows a step-like anomaly around 165 K (195 K) while cooling (warming), which we attribute to a structural phase transition from high temperature rhombohedral () to low temperature orthorhombic (Imma) phase. The step-like anomaly in fr versus T disappears in a field of 300 G. Fractional changes as large as 19% in Δfr/fr and 10% in ΔP/P are observed under H=1 kG around TC. Our study suggests that the rf resonance technique is a versatile tool to study the magnetization dynamics as well as to investigate the structural phase transition in manganites.  相似文献   

15.
We have studied the magnetization in the granular (Ni0.84Fe0.16)54(alumina)46 alloy. The thermomagnetization curve is found to obey the Bloch law. Spin wave stiffness constant D and the exchange constant A were calculated from the experimental results. The magnetic experimental measurements have been interpreted in the framework of random magnetic anisotropy (RMA) model. The results have shown that it is possible to extend the application of RMA to the granular alloy. From an analysis of the approach to saturation magnetization some fundamental parameters have been extracted. In addition, self-consistent ab initio calculations, based on Korringa–Kohn–Rostocker (KKR), are performed to investigate magnetic and electronic properties of the granular alloy. Spin polarization within the framework of the coherent potential approximation (CPA) is considered.  相似文献   

16.
Melt-spun ribbons of Co69Fe7Si14B10 alloy have been prepared at different wheel speeds viz. 47, 34 and 17 m/s and investigated for structural and magnetic properties. Degree of amorphicity in the as-spun ribbons is found to increase with wheel speed. Amorphous phase crystallizes in two stages producing Co2Si, Co2B and CoSi phases on annealing. Increase in wheel speed improves soft magnetic and magnetoimpedance properties due to decrease in perpendicular anisotropy which is associated with stripe domain formation. On annealing soft magnetic properties and magnetoimpedance deteriorate due to the formation of crystalline phases.  相似文献   

17.
Magnetic properties of the single-crystalline Lu2Fe17−xMnx compounds, in which x=0, 0.5, and 2, with the Th2Ni17-type crystal structure are reported. The Lu2Fe17−xMnx compounds with x=0 and 0.5 are ferromagnets at low temperatures and antiferromagnets at high temperatures. The compound with x=2 is always a ferromagnet. The easy-plane magnetic anisotropy in the Lu2Fe17−xMnx ferromagnets drastically weakens with increase in Mn content up to x=2. The temperature dependence of the first magnetic anisotropy constant was obtained and compared with the single-ion model prediction.  相似文献   

18.
The surface and interface morphology and magnetization characteristics of Co70Fe30 thin films deposited on bare glass and p-Si/SiO2 substrates and on conjugated polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) thin films on such substrates have been studied by atomic force microscopy and magneto-optic Kerr effect. It was found that the average absolute magnitude of the coercive field of Co70Fe30 correlates with the roughness of the underlayer prior to Co70Fe30 deposition. P3HT deposited on p-Si/SiO2 substrates possesses an increased surface roughness as compared to the p-Si/SiO2 surface, but displays a decreased surface roughness as compared to the one of a bare glass substrate.  相似文献   

19.
The magnetic properties of the Co38Ni34Al28 alloy have been studied. The alloy exhibits a first order austenite-martensite phase transition in the temperature region between 155 and 247 K. A strain of 0.07% is produced across this phase transition. The Arrott plots obtained from the isothermal magnetic field dependence of magnetization indicate the presence of spontaneous magnetization both in the austenite and martensite phases, confirming the ferromagnetic character of the alloy up to room temperature. The temperature dependence of the high field magnetization indicates the presence of spin wave excitations, spin wave excitation gap and spin wave-spin wave interactions in the martensite phase. The magnetic anisotropy energy constant for the Co38Ni34Al28 alloy is estimated both with the help of the standard law of approach to saturation of magnetization, and also from the field dependence of magnetization using the field for technical saturation of magnetization. The temperature dependences of these energy terms are compared. The estimated values of the magnetic anisotropy constant seem to be in agreement with the magnitude of the spin wave excitation gap estimated from the temperature dependence of high field magnetization.  相似文献   

20.
The exchange bias field HE was much higher for Ta/Co/Co3O4/Ta than Ta/Co/Co3O4, fabricated in a magnetron sputtering system under the same experimental conditions. The XPS analysis showed that Ta atoms of cap layer for Ta/Co/Co3O4/Ta diffused into Co3O4 layer and reduced Co3O4, and introduced some nonmagnetic defects into the AFM layer. The dilution of the AFM layer led to the formation of volume domains. We believed that the higher HE for the multilayers Ta/Co/Co3O4/Ta was primarily attributed to the formation of volume domain due to some nonmagnetic defects in AFM layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号