首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a broadband metamaterial absorber is successfully designed by a three-dimensional structure. And the three-dimensional absorber is just obtained by a two-dimensional structure which rotates 90°along x-axis. The simulated results show that the absorption of the three-dimensional metamaterial absorber is much better than the two-dimensional absorber. Moreover, the absorber is polarization-sensitive for the incident electromagnetic waves due to the asymmetry of the structure. Compared with the Y-polarization wave, the proposed absorber can realize broadband absorption with greater than 90% from 355.6 to 737.7 THz for X-polarized wave. Finally, based on the analysis of the electric field and surface current distributions, it can demonstrate that the localized surface plasmons and dipoles resonances will play an important role in the broadband absorption. And we believe that the metamaterial absorber will have many potential applications in emitter and energy harvesting.  相似文献   

2.
In this paper, we report the design, simulation, and measurements of a broadband metamaterial absorber (MA) based on a periodic array of multi-layer cross-structure resonators. A perfect narrowband MA consists of cross-structure resonator, dielectric substrate, and continuous metal films, and the absorption frequency can be tunable by changing the geometrical parameters based on L-C resonance circuit theory. Furthermore, the absorption band of our design is effectively extended by simply stacking several such structural layers with different geometrical dimensions. Finally, the 4-layer cross-structure MA is only 2 mm, which can achieve a full width at half maximum (FWHM) bandwidth of 2 GHz by numerical simulations, and 90 % bandwidth of 1.9 GHz by experiments.  相似文献   

3.
A new metamaterial absorber structure is designed and characterized both numerically and experimentally for microwave energy harvesting applications. The proposed structure includes four wheel resonators with different dimensions, from which the overall response of the structure can then be obtained by summing all the overlapping frequency responses corresponding to each dimension. The essential operation frequency range of the wheels is selected in such a way that the energy used in wireless communications and found within the environment that we live is absorbed. The dimensions are obtained using parametric study and genetic algorithm to realize wideband absorption response. When the simulation and measurement results are taken into account, it is observed that the metamaterial absorber based harvester has potential to absorb and convert microwave energy with an absorption ratio lying within the range of 80 and 99% for the frequency band of 3–5.9 and 7.3–8 GHz. The conversion efficiency of the structure as a harvester is found to be greater than 0.8 in the interval of 2–5 GHz. Furthermore, the incident angle and polarization dependence of the wheel resonator based metamaterial absorber and harvester is also investigated and it is observed that the structure has both polarization and incident angle independent frequency response with good absorption characteristics in the entire working frequency band. Hence, the suggested design having good absorption, polarization and angle independent characteristics with wide bandwidth is a potential candidate for future energy harvester using wireless communication frequency band.  相似文献   

4.
The design of the metamaterial that can exhibit negative refraction at two frequency bands is presented. The components of this metamaterial are cut wire pairs and continuous wires. The cut wire pairs structure in our sample can achieve the magnetic resonance at two frequency bands by appropriately designing the cut wire dimension. Through numerical simulation, the transmission property of the proposed dual band negative index metamaterial is investigated and its result shows that with the introduction of continuous wires, the stop bands for cut wire pairs (permeability μ<0) and the frequency band for continuous wires (permittivity ε<0) components would overlap and lead to the appearance of pass bands near the two magnetic resonance frequency bands. Its electromagnetic properties are then retrieved to demonstrate that the dual band left-hand behavior can be obtained in our sample structure. It is believed that our approach will be effective to make this kind of dual band negative refractive metamaterial based on the multiple magnetic resonances work at optical frequency.  相似文献   

5.
We present studies on the optical properties of periodic metallic-dielectric (MD) multilayers and numerical results show that there exists, insensitive to the lattice scaling, a transparent band as long as the layer thickness is in the subwavelength ranging. It illustrates the transparent band is controlled by mechanisms beyond the Bragg scattering: the shorter-wavelength band edge comes from the intensive resonant absorption behavior of the metals, while the longer-wavelength band edge is determined by zero (volume) averaged permittivity εeff=0. Moreover, a Lorentz-Drude model for the permittivity of a ε-negative (ENG) metamaterial is used to show that a transparent band may be obtained in a subwavelength structure consisting of ENG multilayers with total length less than both the center wavelength and the half width of the band.  相似文献   

6.
This paper presents a multi-band metamaterial absorber comprising three multi-gap split-ring resonators (SRRs) with different radii and ring widths, designed in combinatorial approach. Experiments demonstrate that it can perform absorption peaks at three resonant frequencies 7.10 GHz, 10.04 GHz, and 17.44 GHz with the absorption of 99.90%, 99.91%, and 99.68%, respectively. The physical mechanism of metamaterial absorber was explained through numerical calculation and simulation, which showed that three absorption peaks were caused respectively by the three four-gap SRRs. The absorber is insensitive to incident angles and polarization states, so it has broad prospect of application.  相似文献   

7.
田子建  陈文超  樊京 《物理学报》2013,62(7):74102-074102
提出了一种基于双Σ形金属条的双向型左手材料结构. 该结构由介质基板和两个反向对称放置在介质基板两侧的Σ形金属条构成, 在电磁波平行入射和垂直入射两种情况下, 都能够实现双负特性(ε<0, μ<0) . 通过利用HFSS软件仿真、等效参数提取, 分析验证了该结构在X波段具有双向特性和左手特性. 该结构的双向特性拓宽了电磁波的入射角度, 对左手材料的多维化和多向化发展提供了参考价值. 关键词: 左手材料 双Σ形金属条 双向  相似文献   

8.
This Letter describes the fabrication of a microelectromechanical systems (MEMS) bimaterial terahertz (THz) sensor operating at 3.8 THz. The incident THz radiation is absorbed by a metamaterial structure integrated with the bimaterial. The absorber was designed with a resonant frequency matching the quantum cascade laser illumination source while simultaneously providing structural support, desired thermomechanical properties and optical readout access. Measurement showed that the fabricated absorber has nearly 90% absorption at 3.8 THz. A responsivity of 0.1°/μW and a time constant of 14 ms were observed. The use of metamaterial absorbers allows for tuning the sensor response to the desired frequency to achieve high sensitivity for potential THz imaging applications.  相似文献   

9.
为了获得吸收率高、吸波带宽宽的超材料,设计了一种谐振超材料吸波体.该吸波体由多个开口圆环组成,采用商业软件CST Studio Suite 2009频域求解器计算了其在25~35 GHz波段内的S参量,并计算了其吸波率A(ω),在28.4 GHz处吸收率达到86%,带宽达到3.5 GHz.利用不同吸波频段的叠加效应,设计了一种谐振超材料吸波组合体,计算了在25~35 GHz波段的S参量,在29.7 GHz处吸波率达99.9%,吸波带宽达到3.1 GHz,吸收率明显增加.将GHz波段的结构缩小1 000倍,在THz波段同样可以达到高吸收,说明超材料吸波体可以通过对结构尺寸调节改变吸收波段.同时,对其阵列进行仿真计算,发现不同的排列方式仿真结果不同.由于各个谐振环之间的相互作用对吸收效果影响较大,吸收率减小.该吸波材料由金属组成,能灵活地对介电常量和磁导率进行调节,从而实现高吸收.  相似文献   

10.
We reported determination of the loaded quality factor (Q) of highly overcoupled (dielectric, loop-gap, and cavity) resonators used in time-domain electron paramagnetic resonance. We introduced a microwave absorber into resonators and achieved critical-coupling. Due to the deep “Q-dip” of critical-coupling, we can easily determine the loaded Q as low as 10. The loaded Q of resonators with and without the microwave absorber was examined under various overcoupling conditions. We found that the radiation Q (Q r) can be calculated from the loaded Q of the resonator that contains the microwave absorber. We proposed a simple model that represents the loaded Q of the overcoupled resonator in terms of two parameters, Q 0 and Q r. Q 0 is the effective unloaded Q of the resonator determined for the critically coupled resonator without the microwave absorber and is independent of a degree of coupling. The model can be applied to overcoupling in which the coupling parameter (Q 0/Q r) is in the range of 1 to ca. 20.  相似文献   

11.
Wenbo Cao 《中国物理 B》2022,31(11):117801-117801
A pure dielectric metamaterial absorber with broadband and thin thickness is proposed, whose structure is designed as a periodic cross-hole array. The pure dielectric metamaterial absorber with high permittivity is prepared by ceramic reinforced polymer composites. Compared with those with low permittivity, the absorber with high permittivity is more sensitive to structural parameters, which means that it is easier to optimize the equivalent electromagnetic parameters and achieve wide impedance matching by altering the size or shape of the unit cell. The optimized metamaterial absorber exhibits reflection loss below -10 dB in 7.93 GHz-35.76 GHz with a thickness of 3.5 mm, which shows favorable absorption properties under the oblique incidence of TE polarization (±45°). Whether it is a measured or simulated value, the strongest absorbing peak reaches below -45 dB, which exceeds that of most metamaterial absorbers. The distributions of power loss density and electric and magnetic fields are investigated to study the origin of their strong absorbing properties. Multiple resonance mechanisms are proposed to explain the phenomenon, including polarization relaxation of the dielectric and edge effects of the cross-hole array. This work overcomes the shortcomings of the narrow absorbing bandwidth of dielectrics. It demonstrates that the pure dielectric metamaterial absorber with high permittivity has great potential in the field of microwave absorption.  相似文献   

12.
太赫兹超材料吸收器作为一种重要的太赫兹功能器件,被广泛应用于生物医学传感、电磁隐身、军用雷达等多个领域.但这种传统的超材料吸收器结构具有可调谐性差、功能单一、性能指标不足等缺点,已经无法满足复杂多变的电磁环境的要求,因此可调谐超材料吸收器逐渐成为了太赫兹功能器件领域的研究热点.为实现超材料吸收器吸收特性的调谐,通常从调...  相似文献   

13.
龚建强  梁昌洪 《物理学报》2011,60(5):59204-059204
提出了一种基于TE10矩形波导的异向介质有效本构参数提取算法,利用该算法提取了对称多元胞铁氧体和金属线阵复合型异向介质的有效介电常数ε和有效磁导率μ.文中着重探讨了多元胞异向介质传播常数β实部的分枝选取问题,借鉴了测量理论中测量值和理论真值之间的关系,将单元胞的β提取值作为多元胞β的测量值,进而确定多元胞β的真实值;由于在多元胞异向介质各元胞之间存在耦合效应,使电磁波主要以周期性Bloch波的形式存在 关键词: 10矩形波导')" href="#">TE10矩形波导 异向介质 有效本构参数提取 铁氧体和金属线阵异向介质  相似文献   

14.
A new perfect metamaterial absorber based on metal-dielectric layer combination is designed and investigated to be used in solar cell application. The designed structure is particularly presented in the range of solar spectrum in order to utilize the solar energy effectively. Parametric studies with respect to the dimensions of the structure are carried out to characterize the absorber. According to the results, it is found that the metamaterial absorber has 99.99% absorption at 403.5 THz. In addition, the fractional bandwidth (FBW) of the absorption region is calculated and 22.2% FBW is obtained. Moreover the simulation results showed that the proposed design is also polarization and incident angle insensitive. As a result, the proposed metamaterial absorber provides perfect absorption for visible and near infrared frequency ranges and can be used for the realization of more efficient new solar cells.  相似文献   

15.
In this paper, a new multiband metamaterial absorber design is proposed and the numerical characterization is carried out. The design is composed of three layers with differently sized quadruplets in which the interaction among them causes the multiband absorption response in the infrared frequency regime. In order to characterize the absorber and explain the multiband topology, some parametric studies with respect to the dimensions of the structure are carried out and the contributions of the quadruplets to the absorption spectrum are analyzed. According to the results, it is found that the proposed metamaterial absorber has five bands in the infrared frequency regime with the absorption levels of: 98.90%, 99.39%, 86.46%, 92.80% and 97.96%. Moreover, the polarization dependency of the structure is examined and it is found that the design operates well as a perfect absorber with polarization independency in the studied frequency range.  相似文献   

16.
In this paper, a graphene-based metamaterial absorber is proposed and investigated numerically, in which the interaction between a split ring resonator (SRR) and graphene results in a high-Q absorption. To make a better understanding of the resonance mechanism, the electric and the magnetic fields, and the surface currents at the resonance frequency are investigated. In order to ease the analysis of the structure, an equivalent circuit model is introduced using the transmission line theory, and the accuracy of the proposed model is verified by the full-wave simulation. Finally, different aspects of the designed metamaterial are discussed as a potential label-free sensor for chemical and biomedical sensing. It is shown that by using this structure, a sensor with a sensitivity of 597 GHz/RIU can be achieved.  相似文献   

17.
The electronic, structural properties and optical properties of the rutile TiO2 have been reported using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. We employed the generalized gradient approximation (GGA), which is based on exchange-correlation energy optimization to calculate the total energy. Also we have used the Engel-Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Our results including lattice parameter, bulk modulus, density of states, the reflectivity spectra, the refractive index and band gap are compared with the experimental data. We present calculations of the frequency-dependent complex dielectric function ε(ω) and its zero-frequency limit ε1(0).  相似文献   

18.
A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band.Near-unity absorptions around 9.785 GHz,11.525 GHz,and 12.37 GHz are observed for this metamaterial absorber.The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss.The mechanism for the near-unity absorption is investigated via the dielectric resonator theory.It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator.In addition,the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers.Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes.  相似文献   

19.
We report on the fabrication technique of ultra high Q optical crystalline whispering gallery mode microresonators and discuss their properties. The technique is suitable for the majority of available optical crystals and for production of resonators with small size. To validate the method, we made CaF2 resonators with Q factors exceeding 4 × 108 and a diameter smaller than 100 μm. A single mode resonator has also been fabricated. Possible utilization of these new resonators in quantum optics is discussed.  相似文献   

20.
In this paper, an ultra-broadband metamaterial absorber is successfully designed in the visible region. The structure of the absorber is just obtained by the two-dimensional plane structure which rotate 90° along x-axis. Furthermore, the formation of the structure for the hybrid materials is based on the four U-shaped structure of the metal titanium is embedded in the semiconductor (indium antimonide). The simulated results show that the proposed metamaterial absorber can achieve an ultra-broadband absorption with greater than 90% from 252.2 to 822.3 THz, and the relative absorption bandwidth gets to 106.1%. Finally, the simulated electric field, surface current and power loss density distributions further illustrate the absorption mechanism of the metamaterial absorber. And we believe the metamaterial absorber will have many potential applications in energy harvesting and stealth devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号