首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat diffusion characteristics of a spherical heat source dispersing magnetite nanoparticles (MNPs) in hydro-gel were investigated numerically and experimentally to evaluate the conditions required for magnetic fluid hyperthermia (MFH). Numerical estimation assumed one-dimensional spherical model and constant heat evolution. Experimental observation was carried out by exposing the magnetite-dispersed hydro-gel in an AC magnetic field with strength and frequency of 3.2 kA/m and 600 kHz, respectively. The temperature distribution observed along the radial axis of the spherical heat source agreed well with the theoretical estimation quantitatively and qualitatively. However, the minor difference existed between the theory and experiment was due to the variation in experimentally determined and actual particle size distributions. Thus, we could conclude that the proposed algorithm could be extended to be used in the estimation of the temperature distribution in intravital conditions with blood flow, metabolism etc., to arrive at biologically significant conclusions helpful for MFH cancer treatment.  相似文献   

2.
Measurements of the frequency dependent complex magnetic susceptibility, χ(ω)=χ′(ω)−″(ω), have been used to determine the dynamic properties of three specially prepared 400 G (0.04 T) magnetic fluids. The samples, denoted by sample 1, sample 2 and sample 3, consisted of magnetite particles of mean diameter 6.4 nm, 7.5 nm and 9 nm respectively and were identical in terms of carrier liquid, surfactant and particle material.  相似文献   

3.
Superparamagnetic and monodispersed aqueous ferrofluids of Zn substituted magnetite nanoparticles (ZnxFe3−xO4, x=0, 0.25, 0.3, 0.37 and 0.4) were synthesized via hydrothermal-reduction route in the presence of citric acid, which is a facile, low energy and environmental friendly method. The synthesized nanoparticles were characterized by X ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and the dynamic light scattering (DLS) method. The results showed that a certain amount of citric acid was required to obtain single phase Zn substituted magnetite nanoparticles. Citric acid acted as a modulator and reducing agent in the formation of spinel structure and controlled nanoparticle size and crystallinity. Mean particle sizes of the prepared nanoparticles were around 10 nm. The results that are obtained from XRD, magnetic and power loss measurements showed that the crystallinity, saturation magnetization (MS) and loss power of the synthesized ferrofluids were all influenced by the substitution of Zn in the structure of magnetite. The Zn substituted magnetite nanoparticles obtained by this route showed a good stability in aqueous medium (pH 7) and hydrodynamic sizes below 100 nm and polydispersity indexes below 0.2. The calculated intrinsic loss power (ILP) for the sample x=0.3 (e.g. 2.36 nH m2/kg) was comparable to ILP of commercial ferrofluids with similar hydrodynamic sizes.  相似文献   

4.
Nano-sized magnetic Y3Fe5O12 ferrite having a high heat generation ability in an AC magnetic field was prepared by bead milling. A commercial powder sample (non-milled sample) of ca. 2.9 μm in particle size did not show any temperature enhancement in the AC magnetic field. The heat generation ability in the AC magnetic field improved with a decrease in the average crystallite size for the bead-milled Y3Fe5O12 ferrites. The highest heat ability in the AC magnetic field was for the fine Y3Fe5O12 powder with a 15-nm crystallite size (the samples were milled for 4 h using 0.1 mm? beads). The heat generation ability of the excessively milled Y3Fe5O12 samples decreased. The main reason for the high heat generation property of the milled samples was ascribed to an increase in the Néel relaxation of the superparamagnetic material. The heat generation ability was not influenced by the concentration of the ferrite powder. For the samples milled for 4 h using 0.1 mm? beads, the heat generation ability (W g−1) was estimated using a 3.58×10−4 fH2 frequency (f/kHz) and the magnetic field (H/kA m−1), which is the highest reported value of superparamagnetic materials.  相似文献   

5.
Nanosized MgFe2O4-based ferrite powder having heat generation ability in an AC magnetic field was prepared by bead milling and studied for thermal coagulation therapy applications. The crystal size and the particle size significantly decreased by bead milling. The heat generation ability in an AC magnetic field improved with the milling time, i.e. a decrease in crystal size. However, the heat generation ability decreased for excessively milled samples with crystal sizes of less than 5.5 nm. The highest heat ability (ΔT=34 °C) in the AC magnetic field (370 kHz, 1.77 kA/m) was obtained for fine MgFe2O4 powder having a ca. 6 nm crystal size (the samples were milled for 6-8 h using 0.1 mm ? beads). The heat generation of the samples was closely related to hysteresis loss, a B-H magnetic property. The reason for the high heat generation properties of the samples milled for 6-8 h using 0.1 mm ? beads was ascribed to the increase in hysteresis loss by the formation of a single domain. Moreover, the improvement in heating ability was obtained by calcination of the bead-milled sample at low temperature. In this case, the maximum heat generation (ΔT=41 °C) ability was obtained for a ca. 11 nm crystal size sample was prepared by crystal growth during the sample calcination. On the other hand, the ΔT value for Mg0.5Ca0.5Fe2O4 was synthesized using a reverse precipitation method decreased by bead milling.  相似文献   

6.
A new implant assisted-magnetic drug targeting approach is introduced and theoretically analyzed to demonstrate its feasibility. This approach uses ferromagnetic particles as seeds for collecting magnetic drug carrier particles at the desired site in the body, such as in a capillary bed near a tumor. Based on the capture cross section (λc) approach, a parametric study was carried out using a 2-D mathematical model to reveal the effects of the magnetic field strength (μ0H0=0.01–1.0 T), magnetic drug carrier particle radius (Rp=20–500 nm), magnetic drug carrier particle ferromagnetic material content (xfm,p=20–80 wt%), average blood velocity (uB=0.05–1.0 cm/s), seed radius (Rs=100–2000 nm), number of seeds (Ns=1–8), seed separation (h=0–8Rs), and magnetic drug carrier particle and seed ferromagnetic material saturation magnetizations (iron, SS 409, magnetite, and SS 304) on the performance of the system. Increasing the magnetic field strength, magnetic drug carrier particle size, seed size, magnetic drug carrier particle ferromagnetic material content, or magnetic drug carrier particle or seed saturation magnetization, all positively and significantly affected λc, while increasing the average blood velocity adversely affected it. Increasing the number of seeds or decreasing the seed separation, with both causing less significant increases in λc, verified that cooperative magnetic effects exist between the seeds that enhance the performance. Overall, these theoretical results were encouraging as they showed the viability of this minimally invasive, implant assisted-magnetic drug targeting approach for targeting drugs or radiation in capillary beds.  相似文献   

7.
Europium doped ytrrium oxide (Eu:Y2O3) was synthesized by a chemical wet method in the presence of tween-80 and ?-caprolactam in pH range 4-10. It has been observed that the variation in surface area, pore size, and pore volume of the final product, was strongly dependent on the initial pH of the solution. The powder with a large surface area (∼230 m2/g) and low pore diameter (∼16 nm) was obtained when the powder was processed at pH ∼4. The crystallite sizes of the powders processed at pH ∼4 and 10, were found to be 35 and 198 nm, respectively. The structural, chemical and thermal studies of the powders were characterized by X-ray diffraction (XRD), Fourier transformed infrared spectrophotometer (FTIR), Carbon analyzer and Thermogravimetry (TGA). High resolution transmission electron microscopic (HRTEM) study of heat treated powders showed a polygonal morphology with particle size of 40 nm when powder was derived at pH ∼4. Observations of fluorescence suggested that the 5D07F2 transition within europium was found to be highly dependent on the initial pH.  相似文献   

8.
Nanosilicas (A-50, A-300, A-500)/activated carbon (AC, SBET = 1520 m2/g) composites were prepared using short-term (5 min) mechanochemical activation (MCA) of powder mixtures in a microbreaker. Smaller silica nanoparticles of A-500 (average diameter dav = 5.5 nm) can more easily penetrate into broad mesopores and macropores of AC microparticles than larger nanoparticles of A-50 (dav = 52.4 nm) or A-300 (dav = 8.1 nm). After MCA of silica/AC, nanopores of non-broken AC nanoparticles remained accessible for adsorbed N2 molecules. According to ultra-soft X-ray emission spectra (USXES), MCA of silica/AC caused formation of chemical bonds Si-O-C; however, Si-C and Si-Si bonds were practically not formed. A decrease in intensity of OKα band in respect to CKα band of silica/AC composites with diminishing sizes of silica nanoparticles is due to both changes in the surface structure of particles and penetration of a greater number of silica nanoparticles into broad pores of AC microparticles and restriction of penetration depth of exciting electron beam into the AC particles.  相似文献   

9.
The adsorption of alginate (Alg) onto the surface of in water dispersed Fe3O4 nanoparticles and zeta potential of alginate-coated Fe3O4 nanoparticles have been investigated to optimize the colloidal stability of Alg-coated Fe3O4 nanoparticles. The adsorption amount of Alg increased with the decrease of adsorption pH. The zeta potential of Fe3O4 nanoparticles shifted to a lower value after adsorption of Alg. The lower adsorption pH was the lower zeta potential of Fe3O4 nanoparticles became. The Alg-coated Fe3O4 nanoparticles were found to be stabilized by steric and electrostatic repulsions. Those prepared at pH 6 were not stable around pH 5, and those prepared at pH 4 became unstable at pH below 3.5. Alg of Mw 45 kDa was a little bit more adsorbed onto nanoparticles surface than that of Mw 24 kDa. An average Fe3O4 core size of 9.3 ± 1.7 nm was found by transmission electronic microscopy. An average hydrodynamic diameter of 30-150 nm was measured by photon correlation spectroscopy. However, an average core size of 10 nm and an average hydrodynamic diameter of 38 nm were estimated from the magnetization curve of the concentrated magnetic fluids (MFs). The maximum available saturation magnetization of MFs was about 3.5 kA/m.  相似文献   

10.
Nanoparticles of the single spinel phase Co1−xZnxFe2O4+γ of mean size 3-23 nm, as determined by X-ray diffraction analysis, were synthesized by the co-precipitation method followed by a temperature treatment. Magnetic studies carried out in the range of 4.5-550 K revealed gradual transition from ferrimagnetic to superparamagnetic to paramagnetic behaviour depending on the composition and particle size. The observed behaviour indicates a broad distribution of volume sizes of the nanoparticles. Particular importance can be ascribed to the composition of x=0.6 where the observed transition temperature to the paramagnetic state at 310-334 K suggests applicability of this material for magnetic fluid hyperthermia in a self-controlled regime.  相似文献   

11.
The electrodynamic method is used to measure the hysteresis losses of a dense assembly of magnetite nanoparticles with an average diameter D=25 nm in the frequency range f=10–150 kHz and for magnetic field amplitudes H0=100–300 Oe. It is found that the specific loss power is determined by a demagnetizing factor of a whole sample. It diminishes approximately 4.5 times when the sample aspect ratio decreases from L/d=11.4 to L/d≈1, where L and d are the sample length and diameter, respectively. For H0≤300 Oe the maximal specific loss power 120 W/g is obtained for the sample with L/d=11.4 at f=120 kHz. For comparison, the assembly specific absorption rate has been determined also by means of direct measurement of the temperature difference between the inner and outer surfaces of a flat cuvette containing magnetic nanoparticles. For both methods of measurement close values for the specific absorption rate are obtained for samples with similar demagnetizing factors.  相似文献   

12.
The α-Fe2O3/SiO2 nanocomposite containing 45 wt% of hematite was prepared by the sol-gel method followed by heating in air at 200 °C. The so-obtained composite of iron(III) nanoparticles dissolved in glassy silica matrix was investigated by X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. XRPD confirms the formation of a single-phase hematite sample, whereas TEM reveals spherical particles in a silica matrix with an average diameter of 10 nm. DC magnetization shows bifurcation of the zero-field-cooled (ZFC) and field-cooled (FC) branches up to the room temperature with a blocking temperature TB=65 K. Isothermal M(H) dependence displays significant hysteretic behaviour below TB, whereas the room temperature data were successfully fitted to a weighted Langevin function. The average particle size obtained from this fit is in agreement with the TEM findings. The small shift of the TB value with the magnetic field strength, narrowing of the hysteresis loop at low applied field, and the frequency dependence of the AC susceptibility data point to the presence of inter-particle interactions. The analysis of the results suggests that the system consists of single-domain nanoparticles with intermediate strength interactions.  相似文献   

13.
A novel hybrid nanostructured material comprising superparamagnetic magnetite nanoparticles (MNPs) and pectin was synthesized by crosslinking with Ca2+ ions to form spherical calcium pectinate nanostructures, referred as MCPs, which were typically found to be 100-150 nm in size in dried condition, confirmed from transmission electron microscopy and scanning electron microscopy. The uniform size distribution was revealed from dynamic light scattering measurement. In aqueous medium the MCPs showed swelling behavior with an average size of 400 nm. A mechanism of formation of spherical MCPs is outlined constituting a MNP-pectin interface encapsulated by calcium pectinate at the periphery, by using an array of characterization techniques like zeta potential, thermogravimetry, Fourier transformed infrared and X-ray photoelectron spectroscopy. The MCPs were stable in simulated gastrointestinal fluid and ensured minimal loss of magnetic material. They exhibited superparamagnetic behavior, confirmed from zero field cooled and field cooled profiles and showed high saturation magnetization (Ms) of 46.21 emu/g at 2.5 T and 300 K. Ms decreased with increasing precursor pectin concentrations, attributed to quenching of magnetic moments by formation of a magnetic dead layer on the MNPs.  相似文献   

14.
In order to produce magnetic microparticles (agglomerates), magnetite (Fe3O4) particles were synthesized using coprecipitation of FeSO4·7H2O and FeCl3·6H2O with the presence of poly(methacrylic acid) (PMAA) in aqueous solution.. Transmission electron microscopy (TEM), X-ray diffraction, and vibrating sample magnetometry (VSM) methods were used to characterize the PMAA coated superparamagnetic agglomerates. The influences of various processing parameters such as the process temperature, PMAA content, and the addition of surfactant on the agglomerate size and size distribution of produced magnetic microparticles were investigated. The particle size and size distribution characteristics, (the volume weighted mean size (D[4,3], surface weighted mean size D[3,2], the geometric standard deviation, and span value) of the magnetic agglomerates were determined using the laser diffraction technique. The PMAA coated magnetic agglomerates with surface weighted mean sizes ranging from 1.5 to 3 μm were produced successfully.  相似文献   

15.
Co1−xZnxFe2O4 (with x varying from 0 to 0.7) nanoparticles to be used for ferrofluid preparation were prepared by chemical co-precipitation method. The fine particles were suitably dispersed in transformer oil using oleic acid as the surfactant. The magnetization (Ms) and the size of the particles were measured at room temperature. The magnetization (Ms) was found to decrease with the increase in zinc substitution. The magnetic particle size (Dm) of the fluid was found to vary from 11.19 to 4.25 nm decreasing with the increase in zinc substitution.  相似文献   

16.
Ferromagnetic resonance (FMR) experiments were performed as a function of temperature (10-300 K) on γ-Fe2O3 nanoparticles prepared by a sol-gel method. By measuring at several temperatures the relative intensity of the spectrum due to superparamagnetic particles and the anisotropy field of the spectrum due to ferrimagnetic particles, we determined the size distribution of γ-Fe2O3 nanoparticles. It was found to be a log-normal distribution with a most probable diameter Dm=8.1 nm and a standard deviation σ=0.25. Transmission electron microscopy measurements performed on the same samples yielded a log-normal distribution with Dm=11.2 nm and σ=0.23. The difference is attributed to the existence of a disordered surface layer in the particles.  相似文献   

17.
We present the results of the interaction of iron oxide nanoparticles with some biologically active surfactants, namely, oleic acid and cytotoxic alkanolamine derivatives. Physico-chemical properties, as magnetization, magnetite concentration and particle diameter, of the prepared magnetic samples were studied. The nanoparticle size of 11 nm for toluene magnetic fluid determined by TEM is in good agreement with the data obtained by the method of magnetogranulometry. In vitro cytotoxic effect of water-soluble nanoparticles with different iron oxide:oleic acid molar ratio were revealed against human fibrosarcoma and mouse hepatoma cells. In vivo results using a sarcoma mouse model showed observable antitumor action.  相似文献   

18.
We report (FePt)Ag-C granular thin films for potential applications to ultrahigh density perpendicular recording media, that were processed by co-sputtering FePt, Ag, and C targets on MgO underlayer deposited on thermally oxidized Si substrates. (FePt)1−xAgx-yvol%C (0<x<0.2, 0<y<50) films were fabricated on oxidized silicon substrates with a 10 nm MgO interlayer at 450oC. We found that the Ag additions improved the L10 ordering and the granular structure of the FePt-C films with the perpendicular coercivity ranging from 26 to 37 kOe for the particle size of 5-8 nm. The (FePt)0.9Ag0.1-50vol%C film showed the optimal magnetic properties as well as an appropriate granular morphology for recording media, i.e., average grain size of Dav=6.1 nm with the standard deviation of 1.8 nm.  相似文献   

19.
This article describes influence of strong (ionizing) electric field on sprayability of magnetic fluid containing colloid particles with size in the range from 10 to 20 nm of magnetite Fe3O4. Magnetic fluids can be based for example on both transformer oil and physiological solution for application in medical using (in human medical science research), that supports a fluid colloidal system. Further component of magnetic fluid is surfactant. It is acting as surface-active substance that prevents from nanometric dimension particle settlement. Magnetic fluid gets off nozzle with diameter in range 0.3–1.0 mm from container in surroundings of ionizing (i.e. strong) electric field (E > 107 V m?1). As a consequence of action of electric field it gives out suppression surface tension in fluid what leads onwards to decomposition of magnetic fluid ligament at the end of nozzle. The diameter of nozzle oneself respects basic theoretical calculations in regards of fluid concentration and thereinbefore its selected size. Magnetic fluid in dependency on its used liquid base has weak-polar till polar orientation polarization character. It gives out sprayability in non-homogeneous electric field E in combination with magnetic field of intensity H. Orientation of vectors Ê and ?, resp. induction of magnetic field B is defined by parallel or vertical direction. Results are confronted with measurements realized explicitly only at action of electric field (variable B = 0). In the case of magnetic field applications with permanent magnet together with electric non-homogeneous field it gives out unconventional dynamics of electrical charging particles of macroscopic dimension. Orientation particle track is influenced by orientation of field vector combinations. This phenomenon develops magneto-dielectric anisotropy, which oneself manifests behaviour of electrophysical quantities characterizing examination system. In consideration of technology utilization of this method it is very important to respect applied magnetic fluid concentration. Electrical characteristics were examined for volume concentration of magnetite particles in the range from 0.125% to 18%. Nevertheless efficiency optimization of given media suggests to boundary concentration of magnetic fluid of 4.0%, when it is in the regions of weak polar till polar material. Electrophysical research refers to exploitation of applied magnetic layer technology on dielectric insulating substances with inorganic origin as well as thin layer technology coating plastic foils created from macromolecular organic substance.  相似文献   

20.
The present work investigates experimentally curling magnetic configurations locally observed in almost dispersed Permalloy nanoparticles in the remanent state. Magnetic analysis is performed in a field emission TEM using off-axis electron holography. Particularly, electron holography is used to characterize the magnetic microstructure of Fe30Ni70 nanoparticles, whose average diameter (50 nm) is expected to be close to the critical size for a curling magnetic structure (vortex) formation. The vortex core diameter Dcore and the bulk magnetic profile of the vortex are measured and compared with a “rigid vortex” micromagnetic model. The connection between vortex structure and the characteristic micromagnetic length of the system deduced from magnetization curve measurements is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号