首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mn-doped ZnO is anti-ferromagnetic spin glass state, however, it becomes half-metallic ferromagnets upon hole doping. In this Letter we report a theoretical study of (Zn, Mn)O system codoped with N, and show that this codoping can change the ground state from anti-ferromagnetic to ferromagnetic. We have carried out the first-principles electronic structure calculations and report total energy to estimate whether the ferromagnetic state was stable or not. Our approach is based on the spin-polarized relativistic Korringa–Kohn–Rostoker (SPR–KKR) density functional theoretical (DFT) method, within the coherent potential approximation (CPA). Self-consistent electronic structure calculations were performed within the local density approximation, using the Vosko–Wilk–Nusair parameterization of the exchange-correlation energy functional. Our results for energy difference between ferromagnetic sate and spin glass state as well as their dependence on concentrations were presented and discussed.  相似文献   

2.
Intrinsic room-temperature ferromagnetism was detected over n-type carbon-doped ZnO prepared through solid-state reaction. Our results of first-principle calculations based on density functional theory revealed that the CZn4O12 unit is the origin of magnetic moment in the carbon-doped ZnO system. The carbon component has a significant contribution to the net magnetic moment, and any oxygen vacancy present in CZn4O12 has a negative effect on the magnetic properties of the system. Moreover, both antiferromagnetic and ferromagnetic interactions are predicted among carbon atoms located at different CC distances. The result suggests that the defect density influenced by the distribution of carbon has a significant effect on the magnetic properties of the carbon-doped ZnO system.  相似文献   

3.
We have studied the energetics and magnetism in Cr-doped (ZnTe)12 clusters by first principles density functional calculations. Total energy calculations suggest that it is energetically most favourable for Cr atoms to substitute at Zn sites. Both ferromagnetic and anti-ferromagnetic coupling between the Cr atoms exist depending on the Cr-Cr distance in the clusters. The magnetic exchange coupling between Cr atoms is short-ranged.  相似文献   

4.
The state of art in the theoretical and experimental studies of transition metal doped oxides (dilute magnetic dielectrics) is reviewed. The available data show that the generic non-equilibrium state of oxide films doped with magnetic impurities may either favor ferromagnetism with high Curie temperature or result in highly inhomogeneous state without long-range magnetic order. In both case concomitant defects (vacancies, interstitial ions) play crucial part.  相似文献   

5.
In this work, we aimed to examine the spin-polarized electronic band structures, the local densities of states as well as the magnetism of ZnMnTe- and CdMnTe-diluted magnetic semiconductors (DMSs) in the ferromagnetic phase, and with 25% of Mn. The calculations are performed by the recent ab initio full potential augmented plane waves plus local orbitals (FP−L/APW+lo) method within the spin-polarized density-functional theory and the local spin density approximation. We have determined the exchange splittings produced by the Mn d states: Δx(d) and Δx(pd), and we found that the effective potential for the minority spin is more attractive than that for the majority spin. Also, we show the nature of the bonding from the charge spin-densities calculations, and we calculate the exchange constants N0α and N0β, which mimics a typical magneto-optical experiment. The calculated total magnetic moment is found to be equal to 5μB for both DMSs. This value indicates that every Mn impurity adds no hole carriers to the perfect ZnTe and CdTe crystals. Furthermore, we found that p–d hybridization reduces the local magnetic moment of Mn and produces small local magnetic moments on the nonmagnetic Te, Zn and Cd sites.  相似文献   

6.
We present a method for stabilizing ferromagnetism in Mn doped ZnO. We find that Mn doped ZnO show anti-ferromagnetic order in the absence of additional carriers. When Mn doped ZnO is co-doped with C atom at O sites ferromagnetic state gets stabilized. The C doping creates holes which leads to stabilization of ferromagnetic state via hole mediated double exchange mechanism.  相似文献   

7.
X.J. Ye  M.H. Xu  C.T. Au 《Physics letters. A》2009,373(40):3684-3687
Despite carbon and TiO2 are nonmagnetic, we detected ferromagnetism at room temperature over samples of carbon-doped TiO2. The materials were prepared by standard solid-state reaction and sintered either in an argon or nitrogen atmosphere. According to Raman results, the samples sintered in nitrogen showed lower D-bond (disordered) and G-bond (graphitic) concentration, plausibly a result of nitrogen incorporation into the carbon-doped TiO2 materials. All the samples are ferromagnetic at room temperature. With increase of carbon concentration, there is decline of magnetic moment per carbon (in carbide form) due to antiferromagnetic interaction among the carbon atoms. Compared to the sample sintered in argon, the one sintered in nitrogen is lower in magnetic moment due to partial replacement of carbon atoms by nitrogen atoms. We found that the electrons-mediated mechanism is more suitable than the holes-mediated one for the explanation of ferromagnetism of the carbon-doped TiO2 materials.  相似文献   

8.
The magnetic properties of the orbitally degenerate quasi-one-dimensional cobaltites SrxBa1−xCoO3 are explained on the basis of a phase separation phenomenon. Noninteracting magnetic particles embedded in a nonferromagnetic matrix develop in the system. Details are given about the electronic and magnetic structure for x=0,0.2x=0,0.2 and 0.5. At x=0.5x=0.5, the geometry of the CoO6 trigonally distorted octahedra changes by about 1–2%, but magnetic particles get 3 times bigger, compared to the parent compound, with the corresponding changes in the magnetic properties. The electronic structure of the Co4+ ion, however, stays roughly unchanged.  相似文献   

9.
The structural, optical and electrical properties of zirconium-doped zinc oxide have been investigated by first principle calculations. Three possible structures including substitutional Zr for Zn (ZrZn), interstitial Zr (Zri) and substitutional Zr for O (ZrO) are considered. The results show that the formation energy of ZrZn defect is the lowest, which indicates that ZrZn defect forms easier and its concentration may be the highest in the samples. It is also found that as the proportion of Zr increases, the lattice constants increase while the optical band gap first becomes larger and then smaller, which are consistent with our recently experimental results. The electronic structure calculations display that as ZrZn defect is introduced into ZnO, the Fermi-level shifts to the conduction band, and there are excess electrons in the conduction band, which may be a possible reason of the good conductivity of Zr doped ZnO film.  相似文献   

10.
Based on first‐principles calculations, the electronic structure and the associated magnetism of carbon‐doped rutile TiO2 have been investigated in the frame of the generalized gradient approximation (GGA). We find that the carbon substitutional oxygen ions can induce a magnetic moment of about 2.0µB/C, but the carbon substitutional titanium cannot provide any magnetism. Graphics of the spin density show that the magnetism is from the structure distortion around the carbon substitutional oxygen ions in the (110) plane of primitive TiO2. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
TiO2-δ nanoparticles are synthesized by the sol-gel method and annealed under different reducing atmosphere. The x-ray diffraction patterns show that anatase is the dominant phase with small amounts of the futile phase of TiO2-δ for all the samples. Magnetic measurements indicate that the samples annealed in reducing atmosphere exhibit unprecedented room-temperature ferromagnetism, in particular, the saturation magnetization Ms is up to about 8.6 × 10^-3 emu/g for the sample annealed in H2/Ar mixture. Analysis of the x-ray photoelectron spectroscopy spectra for the samples processed under different conditions indicates that the amounts of Ti^3+ or Ti^2+ cations, namely, the concentration of oxygen vacancies, increase with intensifying reducing atmosphere during processing, which shows that ferromagnetism in this material strongly depends on the concentration of oxygen vacancies. The relationships between the ferromagnetism and the crystal structure as well as the grain size in this material are also discussed.  相似文献   

12.
Nickel-doped ZnO (Zn1−xNixO) have been produced using rf magnetron sputtering. X-ray diffraction measurements revealed that nickel atoms were successfully incorporated into ZnO host matrix without forming any detectable secondary phase. Ni 2p core-level photoemission spectroscopy confirmed this result and suggested Ni has a chemical valence of 2+. According to the magnetization measurements, no ferromagnetic but paramagnetic behavior was found for Zn0.86Ni0.14O. We studied the electronic structure of Zn0.86Ni0.14O by valence-band photoemission spectroscopy. The spectra demonstrate a structure at ∼2 eV below the Fermi energy EF, which is of Ni 3d origin. No emission was found at EF, suggesting the insulating nature of the film.  相似文献   

13.
The ZCO (Co-doped ZnO) films were prepared by using submolecule-doping technique, where the magnetic sputtering of Co and ZnO were alternatively performed onto silicon substrates. The prepared ZCO films were then annealed at different temperatures, and the dependence of the ferromagnetism on annealing temperature was studied. It is found that the saturation magnetization of our samples decreases with the increase of annealing temperature. This behavior is possibly due to the decrease of oxygen vacancies with the increase of the annealing temperature.  相似文献   

14.
The cadmium vacancy (VCd) and the tellurium vacancy (VTe) in CdTe are identified by Electron Paramagnetic Resonance (EPR). The EPR spectrum of the singly ionised VTe reveals cubic (unpertubed) symmetry and the hyperfine structure shows that the unpaired electron is equally spread over the four Cd neighbors. Further figand hyperfine interactions with the more distant neighbors are resolved by Electron Nuclear Double Resonance (ENDOR). The VCd is a double acceptor and the EPR spectrum is observed in its singly negative charge state. The symmerty is found to be trigonal, which can be explained in a model in which the hole occupies a dangling bondt 2 orbital and the orbital degeneracy is removed by a static Jahn-Teller distortion. The hyperfine interaction shows that the hole is localised on one of the four Te neighbors.Paper presented at the 132nd WE-Heraeus-Seminar on Positron Studies of Semiconductor Defects, Halle, Germany, 29 August to 2 September 1994  相似文献   

15.
We report that the aluminium vacancy in wurtzite AlN brings about two impurity levels e and a2 in the band gap, not just one single t2 level. The aluminium vacancy carries a magnetic moment of 1μB in the ground state. The molecule orbit of the aluminium vacancy becomes e↑↑a2 rather than e↑↑a2. The calculation is carried out by using the CASTEP code. The intrinsic symmetry of wurtzite AlN is the driving force for this spin splitting. Finally the symmetry of wurtzite AlN results in an anti-ferromagnetic coupling between the aluminium vacancies, as is predicted. Our findings are helpful to gain a more through understanding of the structural and spin property of aluminium vacancy in wurtzite AlN.  相似文献   

16.
The origin of the half-metallicity is different in diluted magnetic semiconductors and Heusler alloys. I briefly review our earlier work on (GaMn)As and (GaMn)N focusing on the relation between the half-metallicity and the strength of the interatomic exchange interactions. This relation is governed by the properties of the valence-band holes. In Heusler alloys the factors determining the thermal behavior are distinct. Here the relation between half-metallicity and the longitudinal fluctuations of atomic moments is considered. The temperature dependence of the Ni magnetization in NiMnSb is studied.  相似文献   

17.
First‐principles LDA + U calculations have been performed to study the effects of oxygen vacancies (VO) on the electronic structure and magnetism in undoped rutile TiO2–x . Instead of treated as an adjustive parameter, the value of U was determined by constrained‐density‐functional calculations. The calculated electronic structure reveals that the valence electrons released by VO would occupy mainly the neighboring Ti:3d orbital which then becomes spin‐polarized due to intra‐atomic exchange interaction, thereby giving rise to the half‐metallic ferromagnetism. The magnetization induced by VO in rutile TiO2–x is almost proportional to the VO concentration (x) for x > 0.0625, and becomes 0 for x ≤ 0.0417. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We present the first-principles calculations of digital magnetic heterostructures Si/M, Ge/M. GaAs/M, GaSb/M, GaN/M and GaN/M (50%) with M=Cr, Mn, Fe, and Co. The interaction between magnetic dopants results in a wide spin-polarized two-dimensional band inside the gap. It is found that beginning occupation of the minority-spin band greatly increases the energy of the ferromagnetic (FM) state and leads, as a rule, to the antiferromagnetic (AFM) spin ordering. This mechanism causes transition to the AFM state, when interaction between magnetic atoms is too strong, and defines the optimum of Curie temperature as a function of transition element concentration in magnetic layers.  相似文献   

19.
The structural study of diluted magnetic semiconductors is important for interpreting the ferromagnetic behavior associated with the materials. In the present work, a series of low concentration Mn-doped ZnO thin films synthesized by pulsed laser deposition was studied by electron microscopy. All films show the wurtzite structure with (001) preferred growth orientation on the Si substrate. Electron diffraction experiments indicate the deterioration of the growth orientation in some areas of the films with increasing Mn concentration, and the existence of a secondary phase, of Mn2O3-type, in the films with larger Mn concentrations. High-resolution electron microscopy images confirm the existence of the secondary phase in the grain boundary of the Mn-doped ZnO phase. The magnetic properties of Mn-doped ZnO are discussed in relation to the structures of the films.  相似文献   

20.
Synthesis and magnetic properties of Mn doped ZnO nanowires   总被引:1,自引:0,他引:1  
Mn doped ZnO nanowires have been synthesized using a simple autocombustion method. The as-synthesized Mn doped ZnO nanowires were characterized by X-ray diffraction and transmission electron microscopy. An increase in the hexagonal lattice parameters of ZnO is observed on increasing the Mn concentration. Optical absorption studies show an increment in the band gap with increasing Mn content, and also give evidence for the presence of Mn2+ ions in tetrahedral sites. All Zn1−xMnxO (0≤x≤0.25) samples are paramagnetic at room temperature. However, a large increase in the magnetization is observed below 50 K. This behavior, along with the negative value of the Weiss constant obtained from the linear fit to the susceptibility data below room temperature, indicate ferrimagnetic behavior. The origin of ferrimagnetism is likely to be either the intrinsic characteristics of the Mn doped samples, or due to some spinel-type impurity phases present in the samples that could not be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号