首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
For over a decade, echo-planar imaging (EPI) has been used in both the medical and applied sciences to capture velocity fields of fluid flows. However, previous studies have not rigorously confirmed the accuracy of the measurements or sought to understand the limitations of the technique. In this study, a bipolar gradient was added to a flow-compensated EPI pulse sequence to obtain rapid phase contrast images of steady and unsteady flows through two step stenoses. For steady Re = 100 and 258 flows, accuracy was measured through systematic comparisons with CFD simulations, mass flow rate measurements, and spin echo phase contrast images. On average, the EPI image data exhibited velocity errors of 5 to 10 percent, while mass was conserved to within 5.6 percent at each axial position. Compared to spin-echo phase contrast images, the EPI images have 50 percent lower signal-to-noise ratio, larger local velocity errors, and similar mass conservation characteristics. An unsteady flow was then examined by starting a pump and allowing it to reach a steady Re = 100 flow. Accuracy in this case was measured by the consistency between mass flow rate measurements at different axial positions. Images taken at 0.3 s intervals captured the velocity field evolution and showed that 50 to 100 percent errors occur when the flow changes on a time scale faster than the image acquisition time.  相似文献   

2.
A new, one-dimensional method for the measurement of pulsewave velocities using real-time magnetic resonance (MR) imaging is presented. The measurement sequence is essentially of a RACE-type (Real Time Acquisition and Evaluation) with interleaved acquisition in two not necessarily parallel slices. In each slice the blood flow velocity perpendicular to the slice orientation was monitored. From the relative time difference of blood flow activity and the slice distance, pulsewave velocities were calculated. With a time resolution of 13 ms an overall acquisition time of 3.3 s was achieved. A method for suppression of signal contributions from stationary tissue along the axis of projection is discussed on the basis of a simplified mathematical model. Preliminary volunteer studies show that pulsewave velocities in the range of 1–10 m/s can be measured with an uncertainty of about 0.6 m/s at a conventional 1.5 T imager with a gradient system of maximal 10 mT/m.  相似文献   

3.
While the advantages of parallel acquisition techniques for echo-planar imaging (EPI) are well documented for studies affected by magnetic field inhomogeneities, this work focuses on the costs in functional MRI of brain regions without artifacts due to susceptibility effects. For a visual stimulation paradigm and relative to conventional EPI (2.9 T; TR/TE=2000/36 ms), the use of parallel acquisition at a reduction factor of 2 decreased the mean number of activated voxels by 21% at 2 x 2 x 2-mm(3) resolution (n=6) and by 15% at 3 x 3 x 3-mm(3) resolution (n=6). The loss of sensitivity reflects both a decreased signal-to-noise ratio of the native images due to a lower number of contributing gradient echoes and a decreased BOLD MRI sensitivity due to the coverage of a smaller range of TEs.  相似文献   

4.
A magnetic resonance imaging (MRI) method is described that allows interleaved measurements of transverse (R(2)(*) and R(2)) and longitudinal (R(1)) relaxation rates of tissue water in conjunction with spin labeling. The image-contrasts are intrinsically blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) weighted, but each contrast is made quantitative by two echo time (TE) and inversion recovery time (TIR) acquisitions with gradient echo (GE) and spin echo (SE) weighted echo-planar imaging (EPI). The EPI data were acquired at 7 Tesla with nominal spatial resolution of 430 x 430 x 1000 microm(3) in rat brain in vivo. The method is termed as blood oxygenation level dependent exponential decays adjusted for flow attenuated inversion recovery (BOLDED AFFAIR) and allows acquisition of R(2)(*), R(2), and CBF maps in an interleaved manner within approximately 12 minute. The basic theory of the method, associated experimental/systematic errors, and temporal restrictions are discussed. The method is validated by comparison of multi-modal maps obtained by BOLDED AFFAIR (i.e., two TE and TIR values with GE and SE sequences) and conventional approach (i.e., multiple TE and TIR values with GE and SE sequences) during varied levels of whole brain activity. Preliminary functional data from a rat forepaw stimulation model demonstrate the feasibility of this method for functional MRI (fMRI) studies. It is expected that with appropriate precautions this method in conjunction with contrast agent-based MRI has great potential for quantitative fMRI studies of mammalian cortex.  相似文献   

5.
The purpose of this study was to investigate how flow affects slice-selective excitation, particularly for radiofrequency (rf) pulses optimized for slice-selective excitation of stationary material. Simulation methods were used to calculate the slice profiles for material flowing at different velocities, using optimal flow compensation when appropriate. Four rf pulses of very different shapes were used in the simulation study: a 90° linear-phase Shinnar-LeRoux pulse; a 90° self-refocusing pulse; a minimum-phase Shinnar-LeRoux inversion pulse; and a SPINCALC inversion pulse. Slice profiles from simulations with a laminar flow model were compared with experimental studies for two different rf pulses using a clinical magnetic resonance imaging (MRI) system. We found that, for a given rf pulse, the effect of flow on slice-selective excitation depends on the product of the selection gradient amplitude, the component of velocity in the slice selection direction, and the square of the rf pulse duration. The shapes of the slice profiles from the Shinnar-LeRoux pulses were relatively insensitive to velocity. However, the slice profiles from the self-refocusing pulse and the SPINCALC pulse were significantly degraded by velocity. Experimental slice profiles showed excellent agreement with simulation. In conclusion, our study demonstrates that slice-selective excitation can be significantly degraded by flow depending on the velocity, the gradient amplitude, and characteristics of the rf excitation pulse used. The results can aid in the design of rf pulses for slice-selective excitation of flowing material.  相似文献   

6.
Diffusion tensor magnetic resonance imaging (DT-MRI) is generally performed using an echo planar imaging (EPI) acquisition to map directional water diffusion. However, the oscillating magnetic field gradients of the EPI acquisition can result in considerable mechanical vibrations, which lead, in turn, to magnetic field fluctuations causing Nyquist ghosting in the EPI data. The objective of this study was to investigate effects of EPI readout gradient modulation frequency, which is directly associated with the EPI readout bandwidth (BW), on the accuracy of DT-MRI measurements in a high magnetic field system. A spherical water phantom was used to study the relationship between the EPI BW and the Nyquist ghost for a spin-echo EPI acquisition with a matrix size of 128x128, complemented by diffusion sensitization gradients of up to b=800 s/mm(2) along six directions for DT-MRI. Nine volunteers (four males and five females) were studied using EPI at different BW acquisitions. Analysis of variance was used to investigate the EPI BW effects. The phantom studies demonstrated a systematic relationship between BWs and the intensities of Nyquist ghosts. In the human brain studies, EPI BW variations substantially corrupted diffusion anisotropy indexes (i.e., fractional anisotropy and relative anisotropy) (F=10.5, P=.0001) but were unrelated to diffusion-encoding directions (F=0.14, P=.98). It was possible to minimize BW dependence (F=1.48, P=.25) by tuning the modulation frequency of the EPI readout gradient. In conclusion, diffusion anisotropic indexes are sensitive to the readout BW of EPI due to associated Nyquist ghosting. However, the effect can be minimized by tuning the modulation frequency of the EPI readout gradient, that is, the EPI BW, to a range outside the harmonics of mechanical gradient vibrations.  相似文献   

7.
A gradient echo rapid velocity and acceleration imaging sequence (GERVAIS) has been developed and implemented to image liquid flow within a narrow packed bed. Two-dimensional velocity images have been acquired with an in-plane pixel size of 781 microm x 781 microm, with a data acquisition time of 20 ms for a single velocity component. Images of the x, y and z velocity vectors are reported. Data are reported for Reynolds numbers (based on particle diameter) of 200 and 300. In each case, GERVAIS images are compared with the results of a standard spin-echo phase-encoding velocity measurement. At Re = 200, steady-state flow is expected and the velocity images acquired using both techniques are consistent. At Re = 300, the GERVAIS sequence is able to image the unsteady-state flow field within this system. In contrast, the standard phase-encoding velocity measurement contains significant artefacts.  相似文献   

8.
Turbulent flow, characterized by velocity fluctuations, accompanies many forms of cardiovascular disease and may contribute to their progression and hemodynamic consequences. Several studies have investigated the effects of turbulence on the magnetic resonance imaging (MRI) signal. Quantitative MRI turbulence measurements have recently been shown to have great potential for application both in human cardiovascular flow and in engineering flow. In this article, potential pitfalls and sources of error in MRI turbulence measurements are theoretically and numerically investigated. Data acquisition strategies suitable for turbulence quantification are outlined. The results show that the sensitivity of MRI turbulence measurements to intravoxel mean velocity variations is negligible, but that noise may degrade the estimates if the turbulence encoding parameter is set improperly. Different approaches for utilizing a given amount of scan time were shown to influence the dynamic range and the uncertainty in the turbulence estimates due to noise. The findings reported in this work may be valuable for both in vitro and in vivo studies employing MRI methods for turbulence quantification.  相似文献   

9.
The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is "corrected" with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection.  相似文献   

10.
The advantages of event-related functional Magnetic Resonance Imaging (fMRI) and the increasing use of fMRI in cognitive experiments are both driving the development of techniques that allow images sensitive to the blood oxygen level-dependent effect to be acquired at ever-higher temporal resolution. Here, we present a technique based on the use of echo shifting (ES) in conjunction with a multislice (MS) echo planar imaging (EPI) readout, which allows T2*-weighted images to be generated with a repetition time per slice that is less than the echo time (TE). Using this ES-MS-EPI approach, it is shown that images with a TE of 40 ms can be acquired with an acquisition time per slice of only 27 ms. The utility of the MS-ES-EPI sequence is demonstrated in a visual-motor, event-related fMRI study in which nine-slice image volumes are acquired continuously at a rate of 4.1 Hz. The sequence is shown to produce reliable activation associated with both visual stimuli and motor actions.  相似文献   

11.
Recently, new ultrafast imaging sequences such as rapid acquisition by sequential excitation and refocusing (RASER) and hybrid spatiotemporal encoding (SPEN) magnetic resonance imaging (MRI) have been proposed, in which the phase encoding of conventional echo planar imaging (EPI) is replaced with a SPEN. In contrast to EPI, SPEN provides significantly higher immunity to frequency heterogeneities including those caused by B0 inhomogeneities and chemical shift offsets. Utilizing the inherent robustness of SPEN, it was previously shown that RASER can be used to successfully perform functional MRI (fMRI) experiments in the orbitofrontal cortex — a task which is challenging using EPI due to strong magnetic susceptibility variation near the air-filled sinuses. Despite this superior performance, systematic analyses have shown that, in its initial implementation, the use of SPEN was penalized by lower signal-to-noise ratio (SNR) and higher radiofrequency power deposition as compared to EPI-based methods. A recently developed reconstruction algorithm based on super-resolution principles is able to alleviate both of these shortcomings; the use of this algorithm is hereby explored within an fMRI context. Specifically, a series of fMRI measurements on the human visual cortex confirmed that the super-resolution algorithm retains the statistical significance of the blood oxygenation level dependent (BOLD) response, while significantly reducing the power deposition associated with SPEN and restoring the SNR to levels that are comparable with those of EPI.  相似文献   

12.
Gradient echo (GE) and echo planar imaging (EPI) techniques are two different approaches to functional MRI (fMRI). In contrast to GE sequences, the ultra short EPI technique facilitates fMRI experiments with high spatial and temporal resolution or mapping of the whole brain. Although it has become the method of choice for fMRI, EPI is generally restricted to modern scanners with a strong gradient system. The aim of our study was to evaluate the applicability of EPI for fMRI of the motor cortex using a 1.5 T scanner with a conventional gradient system of 10 mT/m (rise time: 1 ms). Therefore, EPI was compared with a well-established high resolution fast low angle shot (FLASH) technique (matrix size 1282). The FLASH technique was applied additionally with a 642 matrix size to exclude influences caused by different spatial resolution, because the EPI sequence was restricted to a 642 matrix size. A total of 35 healthy volunteers were included in this study. The task consisted of clenching and spreading of the right hand. FLASH and EPI techniques were compared regarding geometric distortions as well as qualitative and quantitative fMRI criteria: Mean signal increase between activation and rest and the area of activation were measured within the contralateral, ipsilateral, and supplementary motor cortex. The quality of subtraction images between activation and rest, as well as the quality of z-maps and time course within activated regions of interest, was evaluated visually. EPI revealed significant distortions of the anterior and postior brain margins; lateral distortions (relevant for the motor cortex) could be neglected in most cases. The mean signal increase was significantly higher using FLASH 1282 compared to FLASH 642 and EPI 642, whereas the activated areas proved to be smaller in FLASH 1282 functional images. Both results can be explained by well-documented partial volume effects, caused by different voxel size. Similar quality of the subtraction images and of the time courses in different regions of interest were found for all techniques under investigation, but slightly reduced quality of z-map in FLASH 1282. Within the limits of reproducibility and measurement accuracy, the location of contralateral activation was similar using FLASH and EPI sequences. In conclusion, EPI proved to be a reliable technique for fMRI of the motor cortex, even on an MR scanner with a conventional gradient system.  相似文献   

13.
粒子图像测速技术(PIV)通过测量被测流场截面上每一位置点的速度,获得整个被测流场的信息.在PIV一般应用中所使用的照明激光片光与成像CCD装置的拍摄方向是垂直的,在某些应用场合受测试条件的限制,需要采用离轴方式进行测量,此时CCD成像方向与照明的激光片光不垂直,而是有一定夹角.离轴测试方式将对PIV系统的光学成像系统、示踪粒子选择和粒子图像处理带来影响.实验采用Scheimpflug离轴聚焦的方法对表面镀银高反射率的示踪粒子进行成像,通过调整成像透镜与CCD像面的夹角可获得清晰的粒子成像,并利用网格校正板和软件计算处理等方法有效校正了由于离轴测试带来的影响.  相似文献   

14.
Arterial spin labeling (ASL) perfusion contrast is not based on susceptibility effects and can therefore be used to study brain function in regions of high static inhomogeneity. As a proof of concept, single-shot spin-echo echo-planar imaging (EPI) acquisition was carried out with a multislice continuous ASL (CASL) method at 1.5T. A bilateral finger tapping paradigm was used in the presence of an exogenously induced susceptibility artifact over left motor cortex. The spin-echo CASL technique was compared with a regular gradient-echo EPI sequence with the same slice thickness, as well as other imaging methods using thin slices and spin-echo acquisitions. The results demonstrate improved functional sensitivity and efficiency of the spin-echo CASL approach as compared with gradient-echo EPI techniques, and a trend of improved sensitivity as compared with spin-echo EPI approach in the brain regions affected by the susceptibility artifact. ASL images, either with or without subtraction of the control, provide a robust alternative to blood oxygenation level dependant (BOLD) methods for activation imaging in regions of high static field inhomogeneity.  相似文献   

15.
We here demonstrate the use of NMR velocity imaging techniques to measure flow in a free falling jet of water at speeds up to and on the order of 1m/s. In particular, we show how to adapt the RARE imaging method, based on a CPMG multiple rf pulse train, so that the real and imaginary parts of the signal may be suitably acquired, enabling pulsed gradient spin echo encoding for flow. We term this method "soft-pulse-quadrature-cycled PGSE-RARE" or SPQC-PGSE-RARE. We further demonstrate the use of a one-dimensional (slice selective) imaging method which takes advantage of the cylindrical symmetry of the flow, and considerably shortens the image acquisition time.  相似文献   

16.
Here we present on the ability of phase-contrast magnetic resonance imaging (MRI) to accurately measure dynamic properties of cerebrospinal fluid (CSF) flow on basal level of brain. CSF characteristics were compared in a group of 55 healthy volunteers. MRI study was performed using 1.5 T system with the following parameters: repetition time TR/echo time TE = 14/8.3 ms; flip angle FA = 15°; slice thickness = 4 mm. Velocity values of CSF flow on basal level of brain obtained in the study were statistically analyzed by capturing mean values and building confidence intervals (p = 0.05). Student’s paired t-test was performed to determine significance of the differences between mean values and between caudal and cranial CSF flows. Normal values of mean velocity, mean flux and peak velocity were defined by Q-flow technique. The highest values of CSF flow characteristics were observed in the Sylvian aqueduct and pontomedullaris cistern. Mean velocity and mean flux of caudal CSF flow had significantly higher values compared to the cranial CSF flow in all investigated structures.  相似文献   

17.
This work shows that complete spatial information of periodic pulsatile fluid flows can be rapidly obtained by Bayesian probability analysis of flow encoded magnetic resonance imaging data. These data were acquired as a set of two-dimensional images (complete two-dimensional sampling of k-space or reciprocal position space) but with a sparse (six point) and nonuniform sampling of q-space or reciprocal displacement space. This approach enables more precise calculation of fluid velocity to be achieved than by conventional two q-sample phase encoding of velocities, without the significant time disadvantage associated with the complete flow measurement required for Fourier velocity imaging. For experimental comparison with the Bayesian analysis applied to nonuniformly sampled q-space data, a Fourier velocity imaging technique was used with one-dimensional spatial encoding within a selected slice and a uniform sampling of q-space using 64 values of the pulsed gradients to encode fluid flow. Because the pulsatile flows were axially symmetric within the resolution of the experiment, the radial variation of fluid velocity, in the direction of the pulsed gradients, was reconstructed from one-dimensional spatial projections of the velocity by exploiting the central slice theorem. Data were analysed for internal consistency using linearised flow theories. The results show that nonuniform q-space sampling followed by Bayesian probability analysis is at least as accurate as the combined uniform q-space sampling with Fourier velocity imaging and projection reconstruction method. Both techniques give smaller errors than a two-point sampling of q-space (the conventional flow encoding experiment).  相似文献   

18.
19.
There has been vast interest in determining the feasibility of functional magnetic resonance imaging (fMRI) as an accurate method of imaging brain function for patient evaluations. The assessment of fMRI as an accurate tool for activation localization largely depends on the software used to process the time series data. The performance evaluation of different analysis tools is not reliable unless truths in motion and activation are known. Lack of valid truths has been the limiting factor for comparisons of different algorithms. Until now, currently available phantom data do not include comprehensive accounts of head motion. While most fMRI studies assume no interslice motion during the time series acquisition in fMRI data acquired using a multislice and single-shot echo-planar imaging sequence, each slice is subject to a different set of motion parameters. In this study, in addition to known three-dimensional motion parameters applied to each slice, included in the time series computation are geometric distortion from field inhomogeneity and spin saturation effect as a result of out-of-plane head motion. We investigated the effect of these head motion-related artifacts and present a validation of the mapping slice-to-volume (MSV) algorithm for motion correction and activation detection against the known truths. MSV was evaluated, and showed better performance in comparison with other widely used fMRI data processing software, which corrects for head motion with a volume-to-volume realignment method. Furthermore, improvement in signal detection was observed with the implementation of the geometric distortion correction and spin saturation effect compensation features in MSV.  相似文献   

20.
In magnetic resonance imaging (MRI), there is always a drive toward reducing the acquisition time. In volume imaging, time is often spent in acquiring data where there exists no signal because the imaging volume is larger than the object. In this paper, a method is presented for scan time reduction using an adaptive field of view (FOV). Multislice images are acquired with the FOV in the phase encoding direction of each slice determined by measurements made on the initial localization survey scan. Depending on the region of interest, an optimized FOV is also determined so that scan time is reduced in comparison to a normal scan while improving image resolution. The method is simple to implement and requires no additional hardware. Typical reductions in scan time are on the order 9-14%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号