首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline manganite La0.50Ba0.50MnO3 was synthesized by an optimized sol-gel method. The initial sample was subjected to step-by-step heat treatment under air atmosphere. The ion stoichiometry, the morphology of crystallites of ceramics, and the magnetic properties were studied. It is established that the average crystallite size D increases from ~30 nm to ~7 μm with increasing annealing temperature. All of the samples studied are characterized by a perovskite-like cubic structure, with the unit cell parameter a increasing continuously from ~3.787 to ~3.904 Å with the average crystallite size. The most significant lattice compression (≈3%) occurs in the sample with an average crystallite size of ~30 nm. The increase in the average crystallite size causes a nonmonotonic increase in the Curic temperature T C from ~264 to ~331 K and in the spontaneous magnetic moment σ S from ~1.52 to ~3.31 μB/f.u. The anomalous behavior of the magnetic properties of the manganite La0.50Ba0.50MnO3 obtained is explained by the competition between two size effects, namely, the frustration of the indirect exchange interactions Mn3+-O-Mn4+ on the nanocrystallite surface and the crystal lattice compression due to the crystallite surface tension.  相似文献   

2.
Luminescence properties of CaS:Ce co-doped with dysprosium has been studied. Ce/Dy co-doped CaS nanophosphors (CaS:Ce0.25Dy0.75, CaS:Ce0.50Dy0.50, CaS:Ce0.75Dy0.25) were synthesized using the solid state diffusion method. The phase purity of the samples was confirmed using XRD data. The particle size was calculated using Debye–Scherrer formula and was found to be varying between 50 and 60 nm for all the three samples (CaS:Ce0.25Dy0.75, CaS:Ce0.50Dy0.50 and CaS:Ce0.75Dy0.25). TEM image analysis of CaS:Ce0.50Dy0.50 shows nearly spherical particles with diameter varying between 50 and60 nm. One way energy transfer from Dy3+ to Ce3+ in CaS host has been investigated using photoluminescence studies. Thermoluminescence of these nanophosphors has been studied for 0.5 Gy–21 kGy dose of gamma rays and the dose linearity of CaS:Ce0.50Dy0.50 has been compared with CaSO4:Dy (standard TL dosimeter). Linear behavior over a large dose range between 0.5 Gy and 21 kGy was found for CaS:Ce0.50Dy0.50 as compared to CaSO4:Dy (nanocrystalline and microcrystalline) but it is found to be less sensitive than microcrystalline CaSO4:Dy. To identify the peaks of Ce3+ and Dy3+ in CaS, the TL spectra of CaS, CaS:Ce, CaS:Dy and CaS:Ce0.50Dy0.50 were recorded. The addition of dopants does not add new peaks in CaS but aid to enhance the TL emission. The peaks in CaS may be associated to intrinsic traps in the host lattice.  相似文献   

3.
The atomic diffusion mechanisms associated with metallurgical failure of TaRhx diffusion barriers for Cu metallizations were studied by in situ transmission electron microscopy (TEM). The issues related to in situ heating of focused ion beam (FIB) prepared cross-sectional TEM samples that contain Cu thin films are discussed. The Cu layer in Si/(13 nm)TaRhx/Cu stacks showed grain growth and formation of voids at temperatures exceeding 550 °C. For Si/(43 nm)TaRhx/Cu stacks, grain growth of Cu was delayed to higher temperatures, i.e., 700 °C, and void formation was not observed. Extensive surface diffusion of Cu, however, preceded bulk diffusion. Therefore, a 10 nm film of electron beam evaporated C was deposited on both sides of the TEM lamellae to limit surface diffusion. This processing technique allowed for direct observation of atomic diffusion and reaction mechanisms across the TaRhx interface. Failure occurred by nucleation of orthorhombic RhSi particles at the Si/TaRhx interface. Subsequently, the barrier at areas adjacent to RhSi particles was depleted in Rh. This created lower density areas in the barrier, which facilitated diffusion of Cu to the Si substrate to form Cu3Si. The morphology of an in situ annealed lamella was compared with an ex situ bulk annealed sample, which showed similar reaction morphology. The sample preparation method developed in this study successfully prevented surface diffusion/delamination of the Cu layer and can be employed to understand the metallurgical failure of other potential diffusion barriers.  相似文献   

4.
We find that inward diffusion of network-modifying cations can occur in an iron-containing silicate glass when it is heat-treated in CO/CO2 (98/2 v/v) or H2/N2 (1/99 v/v) gases at temperatures around the glass transition temperature. The inward diffusion is caused by the reduction of ferric to ferrous ions and this diffusion leads to formation of a silica-rich surface layer with a thickness of 200–600 nm. The diffusion coefficients of the network-modifying divalent cations are calculated and they are different for the glasses treated in the CO and H2 gases. At the applied partial pressures of CO and H2, the H2-bearing gas creates the silica-rich layer more effectively than the CO-bearing gas. The layer increases the hardness and chemical durability of the glass due to the silica network structure in the surface layer.  相似文献   

5.
The Al x Ga1 ? x As/GaAs(100) heterostructures grown by MOS hydride epitaxy were studied using atomic force and scanning electron microscopy. Regions with an ordered nanorelief with a period of approximately 115 nm were discovered on the surface of the sample with x ~ 0.50. An AlGaAs2 superstructural phase appears in these regions.  相似文献   

6.
In this work is reported the synthesis of nanotubes and nanoribbons from mixed oxides (Ti1−x Zr x O2·nH2O), employing hydrothermal treatment in a highly alkaline medium. The morphology and crystal structure of the products obtained via hydrothermal treatment depend on the value of x. For example, for x equal to 0 and 0.50 were observed the presence of nanotubes (diameter around 9 nm) and nanoribbons (diameter around 200 nm), respectively. However, for x values above 0.50, there was no morphological change. Regarding the crystalline structure of these samples, for x equal to 0 was observed the sodium titanate phase; already for x values up to 0.50, we observed the presence of two crystalline phases: sodium titanate and tetragonal ZrO2. For x values above 0.50, only tetragonal ZrO2 was observed. Furthermore, only the product obtained from x equal to 0.15 was observed the presence of three-dimensional flower-like arrangements. The results obtained by the characterization techniques showed the segregation of zirconium after hydrothermal treatment of precursors with x less or equal to 0.50. Thus, we describe the important role that Ti/Zr molar ratio of the precursor plays on the morphology and crystalline phase of the products formed by hydrothermal treatment.  相似文献   

7.
The extent and phase chemical composition of the interface forming under atomic layer deposition (ALD) of a 6-nm-thick Al2O3 film on the surface of crystalline silicon (c-Si) has been studied by depthresolved, ultrasoft x-ray emission spectroscopy. ALD is shown to produce a layer of mixed Al2O3 and SiO2 oxides about 6–8 nm thick, in which silicon dioxide is present even on the sample surface and its concentration increases as one approaches the interface with the substrate. It is assumed that such a complex structure of the layer is the result of interdiffusion of oxygen into the layer and of silicon from the substrate to the surface over grain boundaries of polycrystalline Al2O3, followed by silicon oxidation. Neither the formation of clusters of metallic aluminum near the boundary with c-Si nor aluminum diffusion into the substrate was revealed. It was established that ALD-deposited Al2O3 layers with a thickness up to 60 nm have similar structure.  相似文献   

8.
X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoacoustic/Fourier transform infrared spectroscopy (PA/FTIR) are employed to monitor the changes in the structural aspects of two-line ferrihydrite (FHYD) nanoparticles doped with silica viz. SixFe1−xOOH·nH2O for x=0, 0.02, 0.05, 0.10, 0.15, 0.20, 0.26, 0.40 and 0.50. In XRD, crystallinity decreases and d-spacings increase with increase in x. TEM studies show that the particle size increases systematically with increase in x, from 3.7 nm for x=0 to 5.7 nm for x=0.50. In PA/FTIR, two new bands appear, band F near 3700 cm−1 identified with the surface Si-O-H group and band A near 900 cm−1 identified with Si-O-Fe group, which shifts to higher wavenumbers with increase in x. These results are used to propose a model in which doped Si4+ ions do not displace Fe3+ ions but are chemisorbed on the FHYD surface making a shell of silica for higher doping. This model is consistent with the reported changes in the magnetic properties of FHYD with Si doping.  相似文献   

9.
For the first time, Bi2MoO6 nanofilms were successfully synthesized by simultaneous pulse sonication-pulse electrodeposition (PS-PED) on the stainless steel mesh surface. Bismuth molybdate films were formed under various combinations of electrodeposition and sonication (sono-electrodeposition) in continuous and pulse modes. Porous Bi2MoO6 films synthesized by PS-PED method and showed the highest efficiency in photocatalytic degradation in comparison with other films. Bi2MoO6 film obtained from PS-PED had a thickness of 13.78 nm while, the thickness for the electrodeposition method was 39.52 nm. The high photocatalytic efficiency is attributed to the high surface roughness and low thickness of film synthesized by PS-PED method. Indeed, ultrasound played a key role in the synthesis of films with high surface roughness. On the other hand, shock waves and micro-jets could be dissolved diffusion problems and reduced the dendrite like structures in deposition process. Simultaneous application of pulse modes for both combined methods led to more growth of crystallographic planes. This is due to reaction of ions on the surface in interval relaxation times and produce more nuclei for growth. In order to obtain a high efficiency, response surface methodology was used for optimization of effective variable parameters (ton, toff and sonication amplitude) in film preparation.  相似文献   

10.
In this work we investigate the diffusion and precipitation of supersaturated substitutional carbon in 200-nm-thick SiGeC layers buried under a silicon cap layer of 40 nm. The samples were annealed in either inert (N2) or oxidizing (O2) ambient at 850 °C for times ranging from 2 to 10 h. The silicon self-interstitial (I) flux coming from the surface under oxidation enhances the C diffusion with respect to the N2-annealed samples. In the early stages of the oxidation process, the loss of C from the SiGeC layer by diffusion across the layer/cap interface dominates. This phenomenon saturates after an initial period (2–4 h), which depends on the C concentration. This saturation is due to the formation and growth of C-containing precipitates that are promoted by the I injection and act as a sink for mobile C atoms. The influence of carbon concentration on the competition between precipitation and diffusion is discussed. Received: 19 October 2001 / Accepted: 19 December 2001 / Published online: 20 March 2002 / Published online: 20 March 2002  相似文献   

11.
The lateral surface diffusion at Si-SiO2 interface has been observed at nanometer scale using photoelectron emission microscopy (PEEM) combined with synchrotron soft X-ray excitation. The samples investigated were Si-SiOx micro-patterns prepared by O2+ ion implantation in Si (0 0 1) wafer using a mask. The lateral spacial resolution of the PEEM system was about 41 nm. The brightness of each spot in the PEEM images changed depending on the photon energy around the Si K-edge, in proportion to the X-ray absorption intensity of the corresponding valence states. It was found that the lateral diffusion occurs by 400-450 °C lower temperature than that reported for the longitudinal diffusion at the Si-SiO2 interface. It was also found that no intermediate valence states such as SiO (Si2+) exist at the Si-SiO2 interface during the diffusion. The observed differences between lateral and longitudinal diffusion are interpreted by the sublimated property of silicon monoxide (SiO).  相似文献   

12.
《Solid State Ionics》2006,177(19-25):1961-1964
Dense La0.6Sr0.4CoO3−δ film electrodes were deposited by pulsed laser deposition (PLD) on Ce0.9Gd0.1O1.95 electrolytes. The grain size of one film was 300–500 nm, and the other was 30–50 nm. DC polarization and AC impedance measurements were performed at 873 K–1073 K in O2–Ar gas mixtures. From investigations of the electrochemical capacitances, the rate determining process for both electrodes were confirmed to be the surface reaction. The analyses in the electrochemical resistance revealed that the oxygen adsorption/desorption rate was faster on the electrode with smaller grain size. DC responses agreed with AC results, so the current density on the nano-grain electrode was larger by half an order than those of the sub-micron-grain electrode. Under a dilute oxygen atmosphere, the rate determining step transferred from a surface reaction to a gas phase diffusion.  相似文献   

13.
K. Chu 《Applied Surface Science》2006,252(23):8091-8095
We used the reactive unbalanced close-field dc-magnetron sputtering growth of TiN-TiB2 on Si(1 0 0) at room temperature to determine if scaling theory provides insight into the kinetic mechanisms of two-phase nanocomposite thin films. Scaling analyses along with height-difference correlation functions of measured atomic force microscopy (AFM) images have shown that the TiN-TiB2 nanocomposite films with thickness ranging from 70 to 950 nm exhibit a kinetic surface roughening with the roughness increasing with thickness exponentially. The roughness exponent α and growth exponent β are determined to be ∼0.93 and ∼0.25, respectively. The value of dynamic exponent z, calculated by measurement of the lateral correlation length ξ, is ∼3.70, agreeing well with the ratio of α to β. These results indicate that the surface growth behavior of sputter-deposited TiN-TiB2 thin films follows the classical Family-Vicseck scaling and can be reasonably described by the noisy Mullins diffusion model, at which surface diffusion serves as the smoothing effect and shot noise as the roughening mechanism.  相似文献   

14.
The forward current-voltage characteristics of PtSi Schottky contacts on epitaxial n-type Si (111) is studied in the temperature range from 100 to 300 K. A current contribution in excess to that predicted by thermionic emission diffusion theory is caused by a few thousand patches of reduced Schottky barrier height in a device area of 3.14 mm2. The typical lateral extent of these patches is 70–250 nm. It correlates with the size of surface bumps observed. The number of patches is reduced upon increasing the silicidation temperature up toT siI=550°C. Possible non-uniformities of the typical crystallite grain size of 20 nm are not resolved due to effective pinch-off.  相似文献   

15.
Photoluminescence is used to study the effect of the granule size in porous silicon on the generation efficiency of the excited state of molecular oxygen (1O2) on the surface of silicon nanocrystals. The generation efficiency is found to increase as the granule size becomes smaller than 100 nm, which can be explained by a change in the conditions of exciton diffusion along a network of silicon nanocrystals.  相似文献   

16.
The diffusion of Mg in pulsed laser deposited K(Ta0.65Nb0.35)O3 thin films epitaxially grown on (1 0 0) MgO single crystal substrate were investigated by Auger electron spectroscopy (AES). A diffusion of Mg from the substrate into the whole thickness (400 nm) of the as-deposited K(Ta0.65Nb0.35)O3 films was observed with an accumulation of Mg at the surface. Ex situ post-annealing (750 °C/2 h) has led to a homogeneous distribution of Mg in all the ferroelectric coating. This strong reaction between film and substrate promotes a doping effect, responsible for the reduction of K(Ta0.65Nb0.35)O3 dielectric losses in comparison with films grown on other substrates.  相似文献   

17.
Islands of constant width at half maximum of approximately 100 nm have been observed during the pulsed laser deposition of films of nominal thickness from 0.7 to 3.0 nm of the material YBa2Cu3O7-δ(YBCO) on substrates of SrTiO3. The critical island dimensions of width, height and spacing were analyzed with classical kinetic and thermodynamic theories. Analytically it was calculated that the equilibrium island width for a 29-nm-high island should be 111 nm. The analysis also predicted that islands of smaller height should be wider, and higher islands should be narrower. Islands of height from 3.5 nm to 29 nm were observed with an atomic force microscope to have a constant width at half maximum of approximately 100 nm. There are several possible differences between experiment and analysis that could explain the difference in the results: the islands formed in a non-equilibrium phase of YBCO, the island strain relaxed from the base to the top, and smaller islands may not have reached their equilibrium width. Larger islands had significant roughening at the top. Calculations predict that these islands would be unstable with respect to surface perturbations. Calculations of relaxation strain energy and surface energy showed that there was excess strain energy available for island heights above 9 nm to provide the extra surface energy that would be necessary for surface perturbations to develop. The minimum observed interisland spacing of 36 nm agreed with calculations of the average atom diffusion length (40.6 nm). Received: 2 April 2001 / Accepted: 6 September 2001 / Published online: 20 December 2001  相似文献   

18.
In order to increase the longevity of contaminant retention, a method is sought to improve the corrosion resistance of iron nanoparticles (INP) used for remediation of contaminated water and thereby extend their industrial lifetime. A multi-disciplinary approach was used to investigate changes induced by vacuum annealing (<5 × 10?8 mbar) at 500 °C on the bulk and surface chemistry of INP. The particle size did not change significantly as a result of annealing but the surface oxide thickness decreased from an average of 3–4 nm to 2 nm. BET analysis recorded a decrease in INP surface area from 19.0 to 4.8 m2 g?1, consistent with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations which indicated the diffusion bonding of previously discrete particles at points of contact. X-ray diffraction (XRD) confirmed that recrystallisation of the metallic cores had occurred, converting a significant fraction of poorly crystalline iron to bcc α-Fe and Fe2B phases. X-ray photoelectron spectroscopy (XPS) indicated a change in the surface oxide stoichiometry from magnetite (Fe3O4) towards wüstite (FeO) and the migration of boron and carbon to the particle surfaces. The improved core crystallinity and the presence of passivating impurity phases at the INP surfaces may act to improve the corrosion resistance and reactive lifespan of the vacuum annealed INP for environmental applications.  相似文献   

19.
ABSTRACT

The diffusion of a CO2/CH4 mixture in carbon nanotube (CNT) bundles was studied using molecular simulations. The effect of diameter and temperature on the diffusion of the mixture was investigated. Our results show that the single-file diffusion occurs when CO2 and CH4 are confined in CNTs of diameter less than 1.0 nm. In CNTs of diameter larger than 1.0 nm, both molecules diffuse in the Fickian style. The transition from single-file to Fickian diffusion was demonstrated for both CO2 and CH4 molecules. A dual diffusion mechanism was observed in the studied (20, 0) CNT bundle, single-file diffusion of CO2 in the interstitial sites of (20, 0) CNT bundle and Fickian diffusion of CO2 and CH4 in the pores. For CO2, the interaction energies (CO2–CO2 and CO2–CNT) are larger than that of CH4 in all cases. But only a very small difference in the diffusion coefficient was observed between CO2 and CH4. Temperature has a negligible effect on the difference between diffusion coefficients of CO2 and CH4 in the studied CNT bundles. The adsorption, diffusion and permeation selectivities are discussed and compared, and the adsorption is demonstrated to be the rate limiting step for the separation of CO2/CH4 in CNT bundle membranes.  相似文献   

20.
Electroluminescent (EL) spectra was employed to probe the triplet exciton diffusion length (LT) of a commonly used host material of N,N′-dicarbazolyl-3,5-benzene (mCP) in phosphorescent organic light-emitting devices (OLEDs). By varying the film thickness of bis [2-(4-tertbutylphenyl) benzothiazolato-N,C2], iridium (acetylacetonate) [(t-bt)2Ir(acac)] phosphor doped layer within 30 nm thick mCP layer, a series of devices were fabricated to investigate the EL characteristics. The results showed that with the increasing doped layer thickness (d), both (t-bt)2Ir(acac) emission peaks at 562 nm and mCP emission centered at 403 nm were observed. Moreover, the relationship between mCP EL intensity and d was detected. The LT was induced by an abrupt decrease in variation of mCP EL intensity when d is increased from 10 to 15 nm, and the reason to cause this phenomenon was investigated. The LT of mCP approximately to 15 nm was perfectly consistent to the result of 16±1 nm, which was calculated by the traditional steady-state diffusion model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号