首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 1:1, 1:2 and 1:3 interactions of lanthanon (III) isopropoxide with monofunctional bidentate Schiff bases as salicylidene-o-toluidine (SOTH) and salicylidene-p-p-toluidine (SPTH) have been investigated. The resulting products Ln(OPr1)2(SB), Ln(OPr1)(SB)2 and Ln(SB)3 (where Ln=Pr, Nd and Sm and SB1? is the anion of the corresponding Schiff base) have been isolated in almost quantitative yields. The infrared spectra of these compounds have been recorded and plausible structures suggested.  相似文献   

2.
Summary Dichlorobis(cyclopentadienyl)titanium(IV), Cp2TiCI2, reacts with bidentate Schiff bases such as salicylideneaniline, salicylidene-o-toluidine, salicylidene-m-toluidine, salicylidene-p-toluidine and 2-hydroxy-l-naphthylReprints of this paper are not available.To whom all correspondence should be addressed.  相似文献   

3.
The reactions of ruthenium(II) complexes, [RuHCl(CO)(PPh3)2(B)] [B = PPh3, pyridine (py) or piperidine (pip)], with bidentate Schiff base ligands derived by condensing salicylaldehyde with aniline, o-, m- or p-toluidine have been carried out. The products were characterised by analytical, i.r., electronic, 1H-n.m.r. and 31P-n.m.r. spectral studies and are formulated as [RuCl(CO)(L)(PPh3)(B)] (L = Schiff base anion; B = PPh3, py or pip). An octahedral structure has been tentatively proposed for the new complexes. The Schiff bases and the new complexes were tested in vitro to evaluate their activity against the fungus Aspergillus flavus.  相似文献   

4.
A series of novel bidentate pyrazolone based Schiff base ligands were synthesized by interaction of 4-benzoyl-3-methyl-1-(4′-methylphenyl)-2-pyrazolin-5-one with various aromatic amines like aniline, o-,m-,p-chloroaniline and o-,m-,p-toluidine in a ethanolic medium. All of these ligands have been characterized on the basis of elemental analysis, IR and 1H NMR data. The molecular geometries of five of these ligands have been determined by single crystal X-ray study. Crystallographic study reveals that these ligands exist in the amine-one tautomeric form in the solid state. NMR study also suggests the existence of the amine-one form in solution at room temperature. Ab initio calculations for representative ligand HL1 has been carried out to know the coordination site of the ligand. Novel vanadium Schiff base complexes of these ligands with general formula [OV(L1–7)2(H2O)] have been prepared by interaction of aqueous solution of vanadyl sulfate pentahydrate with DMF solution of the appropriate ligands. The resulting complexes have been characterized on the basis of elemental analysis, vanadium determination, molar conductance and magnetic measurements, thermo gravimetric analysis, infrared and electronic spectral studies. Suitable distorted octahedral structures have been proposed for these complexes.  相似文献   

5.
Reactions of ruthenium(II) carbonyl complexes of the type [RuHCl(CO)(PPh3)2(B)] [B?=?PPh3, pyridine (py), piperidine (pip) or morpholine (mor)] with bidentate Schiff base ligands derived from the condensation of 2-hydroxy-1-naphthaldehyde with aniline, o-, m- or p-toluidine in a 1?:?1 mol ratio in benzene resulted in the formation of complexes formulated as [RuCl(CO)(L)(PPh3)(B)] [L?=?bidentate Schiff base anion, B?=?PPh3, py, pip, mor]. The complexes were characterized by analyses, IR, electronic and 1H NMR spectroscopy, and cyclic voltammetric studies. In all cases, the Schiff bases replace one molecule of phosphine and a hydride ion from the starting complexes, indicating that Ru–N bonds in the complexes containing heterocyclic nitrogenous bases are stronger than the Ru–P bond to PPh3. Octahedral geometry is proposed for the complexes.  相似文献   

6.
Summary Hafnium(IV) complexes have been prepared by the reactions of hafnium(IV) isopropoxide isopropanol with Schiff bases [bis(salicylaldehyde)hydrazine] (Sal-AH2), (bis(o-hydroxyacetophenone)hydrazine] (Acp-AH2), [bis(resacetophenone)hydrazine] (Res-AH2), [bis(salicylaldehyde)ethylenediimine) (SaleneH2), [bis(o-hydroxyacetophenone)ethylenediimine] (AcpeneH2) and [bis(salicylaldehyde)o-phenylenediimine] (SalpheneH2) (derived from salicylaldehyde,o-hydroxyacetophenone, resacetophenone and diamines) in appropriate molar ratios using benzene as solvent. The complexes [Hf(OPr-i)2(SB)] and [Hf(SB)2] (where SB2– represents the dianion of the Schiff base) are reported. The complexes of Sal-A, Acp-A and Res-A are 5-and 6-coordinate while those of salene, acpene and salphene are 6-and 8-coordinate. The Schiff bases draw on Sal-A, Acp-A and Res-A are tridentate and salene, acpene and salphene are tetradentate. The mode of bonding through nitrogen and oxygen and the stereochemistry of the complexes are discussed in relation to the elemental analyses and spectra (electronic, infrared and nuclear magnetic resonance).  相似文献   

7.
Dichlorobis(indenyl)-titanium(IV) and -zirconium(IV), (C9H7)2TiCl2 and (C9H7)2ZrCl2, react with bidentate Schiff bases such as salicylidene aniline, salicylidene-o-toluidine, salicylidene-m-toluidine and salicylidene-p-toluidine in a 1:1 molar ratio in refluxing tetrahydrofuran in the presence of triethylamine to yield complexes of the type (C9H7)2Ti(SB)Cl and (C9H7)2Zr(SB)Cl, respectively where SB is the anion of the corresponding Schiff base, SBH. The new derivatives have been characterised on the basis of their elemental analyses, conductance measurements and spectral (IR, 1H NMR and electronic) studies.  相似文献   

8.
Some transition metal chelates of the Schiff's bases derived from salicylaldehyde and o -anisidine, m -anisidine and p -anisidine have been isolated and characterized. The structures of these complexes have been discussed on the basis of their elemental analyses, conductivities, magnetic moment values, electronic and infrared spectral data. The Ni2+, Cu2+ and Zn2+ form ML2 type compounds, UO22+ and Fe3+ form dimeric [UO2 L2]and [Fe L2 Cl]2 respectively.  相似文献   

9.
A series of (C9H7)2Zr(SB)Cl complexes whereSB is the anion of bidentateSchiff base derived from salicylaldehyde and 4-substituted anilines, viz. salicylidene-4-ansidine, salicylidene-4-phenetidine, salicylidene-4-chloroaniline, salicylidene-4-bromoaniline, salicylidene-4-iodoaniline and salicylidene-4-nitroaniline, have been synthesized by the reaction of bis(indenyl)zirconium(IV) dichloride andSchiff base (SBH) in 1:1 molar ratio in refluxingTHF in the presence of triethylamine. The new derivatives have been characterized on the basis of their elemental analyses, conductance measurements and spectral (IR,1H-NMR, UV-VIS) studies.
Bis(indenyl)zirkonium(IV)-Komplexe monofunktioneller zweizähniger Salicylidimine
Zusammenfassung Es wurde eine Reihe von (C9H7)2Zr(SB)Cl-Komplexen synthetisiert, wobeiSB für das Anion einer zweizähnigenSchiff-Base steht. DieSchiff-Basen sind von Salicylaldehyd und 4-substituierten Anilinen hergeleitet: Salicyliden-4-anisidin,-4-phenetidin, -4-Cl-, -4-Br-, -4-I-anilin und -4-Nitroanilin. Die Synthese erfolgte über die Reaktion von Bis(indenyl)zirkonium(IV)-dichlorid mit derSchiff-Base (SBH) in einem molaren Verhältnis von 1:1 am Rückfluß in Gegenwart von Triethylamin undTHF als Lösungsmittel. Zur Charakterisierung der neuen Derivate wurden Elementaranalysen, Leitfähigkeitsmessungen und spektroskopische Daten (IR,1H-NMR, UV-VIS) herangezogen.
  相似文献   

10.
Summary Metal(II) chelates of Schiff bases derived from the condensation of 1,2,3,5,6,7,8,8a-octahydro-3-oxo-N,1-diphenyl-5-(phenylmethylene)-2-naphthalenecarboxamide with o-aminophenol (KAAP), o-aminothiophenol (KAAT) or o-aminobenzoic acid (KAAB) have been prepared and characterized. The complexes are of the type [M(N2X)]2 for M = CuII and M(NX)2·nH2O for M = NiII, CoII and VOII (X = phenolic oxygen, thiophenolic sulphur or carboxylic oxygen; n = 0 or 2). Conductivity data indicate that the complexes are non-ionic. The Schiff bases behave as dibasic tridentate ligands in their copper(II) complexes and as monobasic bidentate ligands in their nickel(II), cobalt(II) and vanadyl(II) complexes. The subnormal magnetic moments of the copper(II) complexes are ascribed to an antiferromagnetic exchange interaction arising from dimerization. Nickel(II) and cobalt(II) complexes are trans octahedral whereas vanadyl(II) complexes are square pyramidal  相似文献   

11.
Summary Copper(II), nickel(II) and cobalt(II) perchlorate complexes of 5,5-dimethylcyclohexane-1,2,3-trione-2-(p-nitrophenyl-hydrazone) (HL1), 5,5-dimethyl-cyclohexane-1,2,3-trione-2-(p-chlorophenylhydrazone) (HL2), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-chlorophenylhydrazone) (HL4), 5,5-dimethylcyclohexane-1,2,3-trione-2-(o-methylphenyl-hydrazone) (HL5) and 5,5-dimethylcyclohexane-1,2,3-trione-2-(m-methylphenylhydrazone) (HL6) have been prepared, and characterized using analytical, spectral and magnetic measurements. The data reveal that the reaction of Cu(ClO4)2 (1 mol) in EtOH, with all ligands, produces complexes of the type CuL(ClO4)(H2O).nH2O. Nickel(II) and cobalt(II) perchlorates react only with HL1 and HL2 to produce the complexes ML(ClO4)(H2O)3 (where M = NiII, L = L and L2, M = CoII, L = L1) and Co(HL2)2-(ClO4)2.2H2O. The spectral data show that the ligands behave as monobasic bidentate in their azo forms, except HL2 which reacts with cobalt(II) as a neutral bidentate ligand in its hydrazone form.  相似文献   

12.
Zirconium(IV)Schiff base derivatives have been synthesised by reacting zirconium isopropoxide with monofunctional bidentateSchiff bases in different stoichiometric ratios. The resulting derivatives of the type Zr(O-Isopr)3(SB) and Zr(O-Isopr)2(SB)2, whereSB is the anion of the correspondingSchiff baseSBH, have been isolated in almost quantitative yields. Their molecular weights have been determined ebullioscopically and their ir spectra recorded.
Zirkonium(IV)-Komplexe von Schiff-Basen
Zusammenfassung Es wurden Zirkonium(IV)-Schiff-Basen-Derivate in verschiedenen stöchiometrischen Zusammensetzungen über die Reaktion von Zirkoniumisopropoxid mit monofunktionellen zweizähnigenSchiff-Basen synthetisiert. Die Komplexe vom Typ Zr(O-Isopr)3(SB) und Zr(O-Isopr)2(SB)2 [SB als Anion derSchiff-BaseSBH] wurden in fast quantitativer Ausbeute erhalten. Es werden Strukturen vorgeschlagen, die auf ebullioskopisch bestimmten Molekulargewichten und den IR-Spektren basieren.
  相似文献   

13.
Several complexes of the formula trans-[Pt(Meug)(Am)Cl2], Meug: methyleugenol (4-allyl-1,2-dimethoxybenzene), a η2-coordinated olefin, and Am: ammine, methylamine, diethylamine, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine and p-anisidine have been prepared. UV, IR, Raman, 1H NMR, 13C NMR and 2D NMR spectra of the complexes were recorded and analyzed.  相似文献   

14.
4-Hydroxy-7-methoxy-3-[(m-methoxyphenylimino)-phenylmethyl]-2-quinolone ( 6 ) was a by-product of the condensation of ethyl benzoylacetate and m-anisidine; no corresponding products were obtained from p- and o-anisidine. From o-anisidine, 2-phenyl-8-methoxy-4-quinolone ( 1c ) was isolated and characterized; the same reaction also gave 2-phenyl-4-o-anisidyl-1-8-methoxy-quinoline ( 11 ) and the Schiff base ( 14 ) as by-products; the crotonamide (15) also isolated, is a possible intermediate of the cyclization. The direct condensation of anisidines with ethyl benzoylacetate in diphenyl ether and the transformations of some intermediates were studied.  相似文献   

15.
The products obtained by reacting ruthenium (II) complexes [RuHCl(CO)(PPh3)2(B)] [B = PPh3, pyridine (py) or piperidine (pip)] with tridentate Schiff base ligands derived by condensing salicylaldehyde or o-vanillin with o-aminophenol and o-aminothiophenol, have been characterised by analytical, i.r., electronic, 1H-n.m.r. and 31P-n.m.r. spectral studies and formulated as [Ru(L)(CO)(PPh3)(B)] (L = bifunctional tridentate Schiff base anion, B = PPh3, py or pip). An octahedral structure has been tentatively proposed for the new complexes. Some have been tested for the in vitro growth inhibitory activity against bacteria Escherichia coli, Bacillus sp. and Pseudomonas sp.  相似文献   

16.
A new Ru(III) Schiff base complexes of the type [RuX(EPh3)L] (X = Cl/Br; E = P/As; L = dianion of the Schiff bases were derived by the condensation of 1,4-diformylbenzene with o-aminobenzoic acid/o-aminophenol/o-aminothiophenol in the 1:2 stoichiometric ratio) have been synthesized from the reactions of [RuX3(EPh3)3] with appropriate Schiff base ligands in benzene in the 2:1 stoichiometric ratio. The new complexes have been characterized by analytical, spectral (IR, electronic, 1H, 13C NMR and ESR), magnetic moment and electrochemical studies. An octahedral structure has been tentatively proposed for all these new complexes. All the new complexes have been found to be better catalyst for the oxidation of alcohols using molecular oxygen as co-oxidant at ambient temperature and aryl–aryl coupling reactions. These complexes were also subjected to antibacterial activity studies against Escherichia coli, Aeromonas hydrophilla and Salmonella typhi.  相似文献   

17.
A series of Co(II), Ni(II), and Cu(II) complexes have been synthesized with Schiff bases (H2LI and H2LII) derived from 8-formyl-7-hydroxy-4-methylcoumarin or 5-formyl-6-hydroxycoumarin and o-aminophenol. Structures have been proposed from elemental analyses, spectral (IR, UV-Vis, FAB-mass, and Fluorescence), magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Elemental analyses indicate ML · 3H2O [M = Co(II), Ni(II), and Cu(II)] stoichiometry. Spectroscopic studies suggest coordination through azomethine nitrogen, phenolic oxygen of o-aminophenol, and the coumarin via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, and Cladosporium) activities by minimum inhibitory concentration (MIC) method. The redox behavior of the complexes was investigated using cyclic voltammetry (CV).  相似文献   

18.
Schiff bases o-vanilidene-1-aminobenzene (HL1) and o-vanilidene-2-methyl-1-aminobenzene (HL2) lead to the formation of mono- and bis-[(Cl)Zn(L1)] (1), [(Cl)Zn(L2)] (2), [(Cl)Hg(L1)] (3), [(Cl)Hg(L2)] (4), [Zn(L1)2] (5), [Zn(L2)2] (6), [Hg(L1)2] (7), and [Hg(L2)2] (8) complexes by reactions of zinc(II) and mercury(II) chlorides in different mole ratio(s). Complexes 18 have been characterized by elemental analyses (Zn, Hg, C, H, Cl, and N), melting point and spectral (IR, 1H-NMR), PXRD, molar conductivity measurement, and TGA. Conductivity measurements suggest non-electrolytes. Structural compositions have been assigned by mass spectral studies. Four-coordinate geometry may be assigned to these complexes tentatively. Structural study reveals that in 14 two metal centers are held together by two bridged (μ2-Cl) chlorides, whereas 58 contain two bidentate Schiff-base ligands around one metal-producing monomers.  相似文献   

19.
A new class of triazole Schiff bases have been prepared by the reaction of 3,5-diamino-1,2,4-triazole with methyl-, chloro-, and nitro-substituted furan-2-carboxaldehydes in an equimolar ratio (1?:?1). The bidentate ligands were characterized by IR, 1H-, and 13C-NMR, microanalysis, and mass spectrometry. The Schiff bases were complexed with vanadyl(IV) sulfate in a molar ratio (M?:?L) 1?:?2, [M(L)2]SO4 (where L?=?L1–L5 and M?=?VIVO) in a square-pyramidal geometry. In vitro antibacterial activity was determined by screening the compounds against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, and Salmonella typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains and in-vitro antifungal activity was carried out on Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani, and Candida glaberata strains.  相似文献   

20.
New ruthenium(II) complexes, [Ru(CO)(B)(LL)(PPh3)] (where, LL = tridentate Schiff bases; B = PPh3, pyridine, piperidine or morpholine) have been prepared by reacting [RuHCl(CO)(PPh3)3] or [RuHCl(CO)(PPh3)2(B)] with Schiff bases containing donor groups (O, N, X) viz., salicylaldehyde thiosemicarbazone (X = S), salicylaldehyde semicarbazone (X = O), o-hydroxyacetophenone thiosemicarbazone (X = S) and o-hydroxyacetophenone semicarbazone (X = O). The new complexes were characterised by elemental analysis, spectral (i.r., 1H- and 31P-n.m.r.), data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号