首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectrum of CH3F between 2000 and 2100 cm?1 has been investigated under high resolution (0.025 cm?1). Three parallel bands have been analyzed: 2ν3 of 12CH3F for which the rotational K structure has been studied, 3ν3-ν3 of 12CH3F, and 2ν3 of 13CH3F. The band center of the main band 2ν3 of 12CH3F has been found at 2081.383 cm?1.  相似文献   

2.
The absolute intensities of the i.r. absorption bands, which are located in the atmospheric window region, of CFCl3 (“Freon-11”) and CF2Cl2 (“Freon-12”) have been measured at 300°K. Our best estimates for these parameters are: for CFCl3 (“Freon-11”), Sv = 635±36 cm-2atm-1 (9.2μ band), Sv = 1536±45 cm-2atm-1 (11.8μ band); for CF2Cl2 (“Freon-12”), Sv = 718±14 cm-2atm-1 (8.7μ band), Sv = 1136±22 cm-2atm-1 (9.1μ band), and Sv = 1302±40 cm-2atm-1 (10.9μ band).  相似文献   

3.
A non-linear, least-squares program was used to obtain the line intensities and widths of 91 air-broadened lines in the ν2 rotation-vibration band of water vapor in the region from 1800 to 2100 cm-1. The values obtained for the line intensities are, on the average, about 7% stronger than the Air Force Cambridge Research Laboratories (AFCRL) Atmospheric Absorption Line Parameters Compilation. The experimental values for the half widths of the H2O lines are, on the average, 4% higher than the calculated AFCRL values. The measurements have confirmed the narrow widths of some high J transition lines measured by tunable diode laser spectroscopy.  相似文献   

4.
The spectrum of H2CO from 2700 to 3000 cm?1 has been examined at Doppler-limited resolution using a tunable difference frequency laser spectrometer at Lincoln Laboratory. The wavenumbers and strengths of 4350 absorptions have been determined with an accuracy of 0.001 cm?1 and 5%, respectively. These data have been incorporated into the analysis of lower-resolution data from Florida State University to assign 72% of the observed absorptions to one of seven bands: ν3 +ν4 (a C-type band at 2655 cm?1), ν3 + ν6 (a B-type band at 2719.156 cm?1), ν1 (an A-type band at 2782.457 cm?1), ν5 (a B-type band at 2843.326 cm?1), ν2 + ν4 (a C-type band at 2905 cm?1), 2ν3 (an A-type band at 2999.5 cm?1) and ν2 + ν6 (a B-type band at 3000.066 cm?1). The band ν3 + ν4 has been observed for the first time, and the band center for 2ν3 has been corrected from a value of 2972 cm?1 to the value listed above. The effects of strong Fermi and Coriolis resonances on the spectra are discussed.  相似文献   

5.
The absolute intensities of all the J-multiplets between R(13) at 1375cm-1 and P(12) at 1225 cm-1, in the v4-fundamental of 12CH4, have been measured at 300°K. Our values are consistent with published band-intensity measurements and also with the theoretical line strength tabulation by Fox. Spectral transmittance computation using a Lorentz line shape with a hydrogen-broadened half-width of 0.075 cm-1 atm-1 at 300°K for all the lines in the band is in excellent agreement with our experimental data measured with a spectral resolution of 0.2 cm-1. Our best estimate for the absolute intensity of the band is 145±8 cm-2 atm-1 at STP.  相似文献   

6.
The one-magnon Raman spectrum of CoBr2 has been investigated as a function of temperature, and peak frequency, integrated intensity and width parameters obtained. The results obtained for the band energy at low temperature (22.2 ± 0.2 cm-1 at 5.7.K) are in good agreement with AFMR and neutron scattering results. The one-magnon energy renormalises relatively slowly with increasing temperature and is about 15 cm-1 at TN = 19 K, whereas the integrated intensity approaches zero like the magnetization at TN and the width diverges. A low intensity band at 26.8 ± 1 cm-1 (7.6K) may be due to two-magnon scattering from spin waves along the c-axis.  相似文献   

7.
A tunable infrared diode laser was used to record 17 fully resolved vibration-rotation transitions in the v1 fundamental band of HCN at 3μ. The experiments were conducted in an absorption cell on room temperature mixtures of HCN diluted by N2 and Ar. The v1 fundamental band strength of HCN was determined to be 267±8 cm-2 atm-1 at 273.2 K. Small but significant reductions in the residual errors were obtained by using the Galatry profile rather than the Voigt profile to fit the experimentally recorded line shapes. Collisional broadening and narrowing parameters were determined simultaneously from Galatry profile fits to the data. The collision-broadened linewidths of HCN lines in N2 and Ar were determined as a function of rotational quantum number of transitions ranging from P(14) to R(14) (3268.22-3353.29 cm-1). The optical diffusion coefficients of HCN in N2 and Ar at 300 K were determined from the collisional narrowing parameters and were 0.074±0.01 and 0.016±0.03 cm2s-1 respectively.  相似文献   

8.
We have measured, as a function of temperature, the reflectivity from 40 to 240 cm-1 of films of Pb1?xSnxTe grown from sources with x = .21 and .25 on BaF2 substrates. In the x = .21 sample the plasma reflectivity minimum abruptly shifts from 110 cm-1 to 190 cm-1 as the temperature is lowered from 40 to 8 K. This shift corresponds to large changes in DC transport behavior that have been attributed to the indium level entering the band at about 40 K. Fits of the reflectivity to a classical two-oscillator (plasmon-phonon) model give values for the carrier plasma frequency which are in excellent agreement with values that can be calculated from DC Hall measurements with a two-band model for the carrier effective mass.  相似文献   

9.
We report rotationally resolved stimulated Raman gain spectra of the ν1 band of SF6. The fundamental band exhibits a rigid-rotor type spectrum that is readily fit with a band origin of Δα = 774.5445 and a single rotational term Δβ = ?1.10376 × 10?4 cm?1. We also observed and analyzed the ν1 + ν6 hotband with band origin at 774.1820 cm?1. With an experimental resolution of 0.0024 cm?1 there is no evidence for centrifugal distortion or tensor splitting in either band, although the ν1 + ν6 band does exhibit first-order Coriolis splitting as expected.  相似文献   

10.
Absolute line intensities and self-broadening coefficients have been measured at 197° and 294°K for the 201II ← 000 band of 12C16O2 at about 4978cm-1. The vibration-rotation factor (FVR), the purely vibrational transition moment (∣R(O)∣), and the integrated band intensity (Sband) are deduced from the measurements. The results are: FVR(m)=1+(0.24±0.08)x10-4m+(0.55+0.21)x10-4m2, ∣R(O)∣= (4.340±0.008x10-3 debye, Sband=96372±190cm-1km-1atm-1STP. The results for self-broadening coefficients, as well as for individual vibration-rotation lines, are presented in the text.  相似文献   

11.
N2-broadened halfwidths have been measured for 51 absorption lines belonging to the ν3 fundamental band of hydrogen cyanide (1H12C14N) near 3311 cm?1. The data were recorded at room temperature using a Fourier transform spectrometer with a nominal resolution of 0.06 cm?1. A nonlinear least-squares spectral-fitting procedure was used to obtain both line intensities and collision-broadened halfwidths from scans recorded at several different pressures. The N2-broadened halfwidths, determined for all lines with J ≤ 25 in both the P and R branches of the band, show the expected distribution with J for broadening by a nonpolar gas. The halfwidth values range from approximately 0.17 cm?1 atm?1 near the band center to 0.11 cm?1 atm?1 for high-J lines. The band intensity for the ν3 fundamental derived from these measurements is 236.2 ± 9.5 cm?2 atm?1 at 296 K, and empirical coefficients for the vibration-rotation interaction F-factor were also determined.  相似文献   

12.
Measurements of the strengths and air-broadened widths of 223 lines of water vapor have been made with high resolution in the region 2950–3400 cm-1. The strength data of the lines in the 2ν2 and ν1 bands are analyzed to determine the band strengths and the coefficients of the F factors. The band strengths of the 2ν2 and ν1 bands were found to be 1.75±0.08 and 10.3±1.1 cm-2 atm-1 at 296 K, respectively. The selection rules of the lines observed in the ν3 band are forbidden in the symmetric-rotor limit. The majority of the measured strengths of these lines differ from the calculated values because of different asymmetries in the upper and lower vibrational states. Also, Coriolis perturbations in several lines of the ν1 and ν3 bands were observed in the strength measurements. The direct method was applied to determine the air-broadened line widths. The results are compared to the computed values of Benedict and Kaplan. There is good agreement between this work and the computed results for line width values greater than 0.05 cm-1 atm-1. However, for line widths less than 0.05 cm-1 atm-1, the measured values are smaller than the computed widths. A value of 0.018 cm-1 atm-1 is given for the width of the line at 3378.071 cm-1, whereas the calculated value is 0.032 cm-1 atm.  相似文献   

13.
Spectra of the 2ν2 band of formaldehyde have been obtained with high resolution (0.035 cm?1). Measurements were made with path lengths of 8, 16, and 24 m and at sample pressures from 0.1 to 0.3 mm Hg at room temperature (~296°K). From these data, the following constants were determined for the 2ν2 band in wavenumber units: v0=3471.718±0.004,A=9.3958±030013,B=1.28100±0.00024,C=1.11662±0.00024, Tbbb=-12.8±0.5×10-6,Taabb=60±5×10-6. The line strengths were also obtained from the data. The strengths were analyzed to determine the band strength and the rotational factors. At 296°K, the strength of the 2ν2 band was found to be 15.5 ± 0.9 cm?1/(cm·atm).  相似文献   

14.
Absolute line strengths and self-broadened half-widths have been measured at 298 and 200 K for spectral lines ranging from J = 1 to 55 in the ν1 band (860 cm-1) of 16O12C32S, using a tunable diode laser spectrometer. The vibrational transition moment (6.412 ± 0.16 × 10-2D) as well as the absolute intensity (29.63±1.48 cm-2-atm-1 at 298 K), of the ν1 band are determined from these line-strenght measurements. By applying two semi-classical impact theories of collisional broadening, we have obtained results for half-widths at 298 and 200 K which are significantly larger than the experimental data for |m|<50. However, the variation of the linewidths with temperature is well reproduced theoretically.  相似文献   

15.
The absolute intensities of the 8–12 μm bands from freon 11 (CFCl3) were measured at temperatures of 294 and 216°K. Intensities of the bands centered at 798, 847, 934, and 1082 cm-1 are all observed to depend on temperature. The temperature dependence for the 847 and 1082 cm-1 fundamental regions is attributed to underlying hot bands; for the ν2 + ν5 combination band (934 cm-1), the observed temperature dependence is in close agreement with theoretical prediction. The implication of these results on atmospheric i.r. remote-sensing is briefly discussed.  相似文献   

16.
The gas phase infrared spectrum of CF3Cl was studied at medium resolution in the range 2100-600 cm?1. A high number of bands including fundamental, overtone, combination, and “hot” bands of the two species, CF335Cl and CF337Cl, with natural isotopic abundance, was identified. The frequency values of the two long-wavelength fundamentals, ν3 and ν6, were evaluated with higher accuracy by differences of suitable combination and “hot” bands. The Q-branch rotational structure of the ν2 + ν5 perpendicular band for the main variety was analyzed and the molecular constants obtained are reported.  相似文献   

17.
The infrared spectrum of CH2D2 has been recorded in the region of 1345 to 1561 cm?1 with a resolution of 0.030 to 0.026 cm?1. Most of the observed lines have been assigned to transitions of the ν3 band of CH2D2. However, 114 lines have been identified as transitions of the ν2 band of H216O whose band origin has been directly determined to be 1594.7472 ± 0.0030 cm?1. A few weak lines, probably belonging to the ν5 fundamental of CH2D2, remain unassigned. The band center ν = 1435.1326 ± 0.0030 cm?1 and a set of upper state constants were obtained for the ν3 band of CH2D2. Although a slight perturbation was noticed in the ν3 band, all wavenumbers have been fitted with a standard deviation of 3.8 × 10?3 cm?1.  相似文献   

18.
The infrared spectrum of DNO3 (deuterated nitric acid) was recorded at high resolution (0.0027 cm−1) in the 700-1400 cm−1 region on a Bruker IFS 120 HR Fourier transform spectrometer. The analysis of the ν5 band of DNO3 centred at 887.657 cm-1 which is mostly an A-type band, was performed making use of the ground state parameters achieved by Drouin et al. [Drouin BJ, Miller CE, Fry JL, Petkie DT, Helminger P, Medvedev IR. J Mol Spectrosc 2006;236:29-34]. The ν5 fundamental band is strongly perturbed because of the existence of the ν7+ν9 dark combination band at 882.21  cm-1. The 51 and 7191 energy levels of DNO3 are coupled through A and B type Coriolis resonances, and as a consequence, numerous lines from the ν7+ν9 dark combination band could be identified also. In this way about 1070 and 75 energy levels of the 51 and 7191 vibrational states, respectively, were satisfactorily reproduced by the energy levels calculation which account for the observed resonances. A reasonable estimation of the absolute line intensities for the ν5 band of DNO3 was performed using the ν5 transition operator from H14NO3. The spectrum also features the ν5+ν6ν6, ν5+ν7ν7 and ν5+ν9−ν9 hot bands located at 881.03, 882.61 and 884.45 cm−1, respectively.  相似文献   

19.
Line positions and strengths of 12C16O2 were measured between 4550 and 7000 cm−1 using near infrared absorption spectra recorded at 0.01-0.013 cm−1 resolution with the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory at Kitt Peak, Arizona. These were retrieved from 42 laboratory spectra obtained at room temperature with five absorption cells having various optical path lengths (from 0.1 to 409 m) filled with natural and enriched samples of CO2 at pressures ranging from 2 to 581 Torr. In all, band strengths and Herman-Wallis-like F-factor coefficients were determined for 58 vibration-rotation bands from the least-squares fits of over 2100 unblended line strengths; strengths of 34 of these bands had not been previously reported. Band strengths in natural abundance generally ranged from 3.30 × 10−20 to 2.8 × 10−25 cm−1/molecule cm−2 at 296 K. It was found that the high J transitions (J′ ? 61) of the 20012 ← 00001 band centered at 4977.8347 cm−1 are perturbed, affecting both measured positions and strengths. Two other interacting bands, 21113e ← 01101e and 40002e ← 01101e, were also analyzed using degenerate perturbation theory. Comparisons with corresponding values from the literature indicate that absolute accuracies better than 1% and precisions of 0.5% were achieved for the strongest bands.  相似文献   

20.
The parallel band, 2ν3, of CH3CD3 is measured in the region 2715 to 2780 cm?1 under a spectral resolution of ~0.025 cm?1, increased to ~0.015 cm?1 by deconvolution. About 460 lines are identified in the 2ν3 band, and about 240 lines in a hot band arising from the first excited torsional state. Least-squares analyses with Δ2F″ combination differences yield lower-state parameters. An individual subband analysis is undertaken because of perturbations in the vibrational bands studied. Finally, band constants are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号