首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron spin resonance spectra of Mn2+ in diluted solid solutions of MnO2 in Y2O3 have been studied at room temperature for Mn concentrations between 0.20 and 2.00 mol%. Isolated Mn2+ ions in sites with two different symmetries were observed, as well as Mn2+ ions coupled by the exchange interaction. The relative concentration of isolated to coupled Mn2+ ions decreases with increasing manganese concentration. The results are consistent with the assumption that the manganese ions occupy preferentially the C2 symmetry sites. A theoretical calculation based on this model yields an effective range of the exchange interaction between Mn2+ ions of 0.53 nm, of the same order as that of Mn2+ ions in CaO.  相似文献   

2.
The defect (Mn2+,Ni2+,Fe2+) induced magnon gap modes in the layered antiferromagnets K2CoF4 and Rb2CoF4 were investigated with the methods of FIR absorption-and IR emission spectroscopy. The anisotropic exchange-parameters describing the strongly localized Mn2+ spin excitations far below the host lattice magnon band and the Ni2+ excitations in the vacinity of this band are presented. In the diluted system K2Co1-cMncF4 localized Mn2+ cluster modes up to about C≈0.1 were observed. The excitation energy of these modes can only be explained by assuming an anisotropic Mn2+-Mn2+ exchange which is in contrast to the pure isomorphous system K2MnF4. In the spin mismatch system K2CoF4: Fe the magnetic moments of the isolated Fe2+ impurities are pulled from the plane perpendicular to the c-axis and aligned parallel to the easy axis of the magnetic crystal.  相似文献   

3.
The investigation of the manganites La2/3−xPrxSr1/3MnO3, La2/3Sr1/3−xCaxMnO3 and La2/3+xCa1/3−2xAgxMnO3, which all exhibit Mn3+:Mn4+=2, shows that it is possible to reach high magnetoresistance at room temperature, up to 21% under 1.2 T. These materials are compared to La5/6Ag1/6MnO3 which corresponds to the same Mn3+:Mn4+ ratio and exhibits a magnetoresistance of 25% in this field. An interesting feature deals with the value of the insulator-metal transition temperature TIM, often higher than TC, especially for Ag-based compounds. It is suggested that the latter results either from a better oxygenation of the surface of the grains or from a migration of silver toward the surface.  相似文献   

4.
Visible photoluminescence and its temperature dependence of La2/3Ca1/3MnO3 in the temperature range 138-293 K were measured. It was observed that the main broad band centered at ∼1.77 eV with the shoulders at ∼1.57 and ∼1.90 eV existed in the entire temperature range. It can be well fitted by three Gaussian curves B1, B2 and B3 centered at ∼1.52, ∼1.75 and ∼1.92 eV, respectively. The intensities of the peak B1 and B2 vary as temperature increases. In the entire temperature range, the intensity of B1 increases with increasing temperature, whereas that of B2 decreases. The photoluminescence mechanisms for La2/3Ca1/3MnO3 are presented based on the electronic structures formed by the interactions among spin, charge and lattice, in which B1 was identified with the charge transfer excitation of an electron from the lower Jahn-Teller split eg level of a Mn3+ ion to the eg level of an adjacent Mn4+ ion, B2 is assigned to the transition between the spin up and spin down eg bands separated by Hund's coupling energy EJ and B3 is attributed to the transition, determined by the crystal field energy EC, between a t2g core electron of Mn3+ to the spin up eg bands of Mn4+ by a dipole allowed charge transfer process.  相似文献   

5.
The magnetic and electrical transport properties of La0.9Mn0.9M0.1O3 (M=Mn, Zn and Ti) were investigated. The temperature and magnetic field dependence of electrical resistivity (ρ) and dc magnetization were studied. All the compounds are found in rhombohedral structure. The excess oxygen in all three compounds was detected through iodometric titration. A modification in resistivity is observed when M=Mn is replaced by M=Zn and Ti. The high temperature resistivity above TC follow variable range hopping model for both Zn and Ti compounds. For Zn doping, the observation of large field-cool effect and decrease in resistivity at room temperature and is assumed to be due to the implant of Mn4+ in Mn3+ matrix, which favor Mn3+/Mn4+ double exchange. The ferromagnetic behavior below TC for the compound with M=Ti is correlated to the excess oxygen in it, which implants Mn4+ and thus incorporates ferromagnetic interactions. The substitutions lead to a reduction of Tc and magnetization.  相似文献   

6.
EPR and magnetic susceptibility experiments have been performed on x(CuO·MnO)(1?x)[2B2O3·K2O] glasses with x varying in the range 0?x?50 mol.%. For x?3 mol.% both Cu2+ and Mn2+ ions are present mostly as the isolated species. The increase of the g-tensor values and bonding parameters (α2, β2, δ2) for Cu2+ ions together with the increase of TM ions concentration in the 0.2–1 mol.% range was noticed. In the case of 5 ? x ? 30 mol.% the dipole-dipole and superexchange interactions occur between transition metal ions, the first type of interactions prevailing in this range of concentration. For x30 mol.% the superexchange interaction prevail. The strong interaction between Cu2+ and Mn2+ gives rise to the exchange coupled Cu2+Mn2+ pairs in the studied glasses with x 3 mol.%.  相似文献   

7.
Magnetic and transport properties of double distorted perovskites CaCuMn6O12 and CaCu2Mn5O12 are studied in a range 2–300 K. The leading role in magnetism of these compounds belongs to antiferromagnetic exchange interaction of Cu2+ in square coordination with Mn3+/Mn4+ in octahedral coordination. The values of saturation magnetization indicate that Mn3+ ions in square coordination are coupled ferromagnetically with Mn3+/Mn4+ in octahedral coordination. The colossal magnetoresistance in the pellet samples is due assumingly to intergranular spin-polarized tunneling of current carriers.  相似文献   

8.
Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (X=0.17, 0.25, 0.33, 0.5) compounds are prepared by a simple combustion method. The Rietvelt analysis shows that these compounds could be classified as having the α-NaFeO2 structure. The initial charge-discharge and irreversible capacity increases with the decrease of x in Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2. Indeed, Li[Ni0.50Mn0.50]O2 compound shows relatively low initial discharge capacity of 200 mAh/g and large capacity loss during cycling, with Li[Ni0.17Li0.22Mn0.61]O2 and Li[Ni0.25Li0.17Mn0.58]O2 compounds exhibit high initial discharge capacity over 245 mAh/g and stable cycle performance in the voltage range of 4.8 -2.0 V. On the other hand, XANES analysis shows that the oxidation state of Ni ion reversibly changes between Ni2+ and about Ni3+, while the oxidation state of Mn ion sustains Mn4+ during charge-discharge process. This result does not agree with the previously reported ‘electrochemistry model’ of Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2, in which Ni ion changes between Ni2+ and NI4+. Based on these results, we modified oxidation-state change of Mn and Ni ion during charge-discharge process.  相似文献   

9.
Single-phase hexagonal-type solid solutions based on the multiferroic YMnO3 material were synthesized by a modified Pechini process. Copper doping at the B-site (YMn1−xCuxO3; x<0.15) and self-doping at the A-site (Y1+yMnO3; y<0.10) successfully maintained the hexagonal structure. Self-doping was limited to y(Y)=2 at% and confirmed that excess yttrium avoids formation of ferromagnetic manganese oxide impurities but creates vacancies at the Mn site. Chemical substitution at the B-site inhibits the geometrical frustration of the Mn3+ two-dimensional lattice. The magnetic transition at TN decreases from 70 K down to 49 K, when x(Cu) goes from 0 to 15 at%. Weak ferromagnetic Mn3+-Mn4+ interactions created by the substitution of Mn3+ by Cu2+, are visible through the coercive field and spontaneous magnetization but do not modify the overall magnetic frustration. Presence of Mn3+-Mn4+ pairs leads to an increase of the electrical conductivity due to thermally-activated small-polaron hopping mechanisms. Results show that local ferromagnetic interactions can coexist within the frustrated state in the hexagonal polar structure.  相似文献   

10.
The erbium-based manganite ErMnO3 has been partially substituted at the manganese site by the transition-metal elements Ni and Co. The perovskite orthorhombic structure is found from x(Ni)=0.2–0.5 in the nickel-based solid solution ErNixMn1−xO3, while it can be extended up to x(Co)=0.7 in the case of cobalt, provided that the synthesis is performed under oxygenation conditions to favor the presence of Co3+. Presence of different magnetic entities (i.e., Er3+, Ni2+, Co2+, Co3+, Mn3+, and Mn4+) leads to quite unusual magnetic properties, characterized by the coexistence of antiferromagnetic and ferromagnetic interactions. In ErNixMn1−xO3, a critical concentration xcrit(Ni)=1/3 separates two regimes: spin-canted AF interactions predominate at x<xcrit, while the ferromagnetic behavior is enhanced for x>xcrit. Spin reversal phenomena are present both in the nickel- and cobalt-based compounds. A phenomenological model based on two interacting sublattices, coupled by an antiferromagnetic exchange interaction, explains the inversion of the overall magnetic moment at low temperatures. In this model, the ferromagnetic transition-metal lattice, which orders at Tc, creates a strong local field at the erbium site, polarizing the Er moments in a direction opposite to the applied field. At low temperatures, when the contribution of the paramagnetic erbium sublattice, which varies as T−1, gets larger than the ferromagnetic contribution, the total magnetic moment changes its sign, leading to an overall ferrimagnetic state. The half-substituted compound ErCo0.50Mn0.50O3 was studied in detail, since the magnetization loops present two well-identified anomalies: an intersection of the magnetization branches at low fields, and magnetization jumps at high fields. The influence of the oxidizing conditions was studied in other compositions close to the 50/50=Mn/Co substitution rate. These anomalies are clearly connected to the spin inversion phenomena and to the simultaneous presence of Co2+ and Co3+ magnetic moments. Dynamical aspects should be considered to well identify the high-field anomaly, since it depends on the magnetic field sweep rate.  相似文献   

11.
Cerium-doped Y1−xCexMnO3 compounds have been prepared in single-phase form for x=0 to 0.10. X-ray diffraction (XRD) patterns could be analyzed by using P63cm space group. Temperature variations of ac susceptibility and magnetization measurements show that these Ce-doped materials exhibit weak ferromagnetic transition. The observed ferromagnetic transition is attributed to the double exchange ferromagnetic interaction between Mn2+ and Mn3+ ions due to electron doping. The MH loops exhibit hysteresis along with linear contribution and were analyzed based on bound magnetic polaron (BMP) model. Increase in saturation magnetization and decrease in BMP concentrations have been observed with increase in Ce doping.  相似文献   

12.
The paper is dedicated to investigation of the Mn2+ luminescence in Tb3Al5O12 (TbAG) garnet, as well as the processes of excitation energy transfer between host cations (Tb3+ ions) and activators (Mn2+ and Mn2+-Ce3+ pair ions) in single crystalline films of TbAG:Mn and TbAG:Mn,Ce garnets which can be considered as promising luminescent materials for conversion of LED's radiation. Due to the effective energy transfer between TbAG host and activator, Mn2+ ions in TbAG possess the bright orange luminescence in the bands peaked at 595 nm with a lifetime of 0.64 ms which are caused by the 4T16A1 radiative transitions. The simultaneous process of energy transfer is realized in TbAG:Mn,Ce: (i) from Tb3+ to Mn2+ ions; (ii) from Tb3+ cations to Ce3+ ions and then partly to Mn2+ ions through Tb3+ ion sublattice and Ce-Mn dipole-dipole interaction.  相似文献   

13.
The ZnGa2O4:Mn2+, Cr3+ phosphors show three colors; the blue band of 380 nm from the charge transfer between Ga-O, the green band of 505 nm from Mn2+ and the red band of 705 nm from Cr3+. As a variation of Mn2+ or Cr3+ concentrations in ZnGa2O4:Mn2+, Cr3+, the relative emission intensity can be tuned. This phenomenon is explained in terms of the energy transfer based on four factors: the spectral overlap between the energy donors (Ga-O) and the energy accepters of Mn2+ or Cr3+, the absorption cross section of the energy accepters, the distance between them, and the decay time of the energy donors. ZnGa2O4:0.0025Mn2+, 0.010Cr3+ shows the CIE coordinates of x=0.4014, y=0.3368, which is a pure white light. The single-phased full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors can be applied to illumination devices.  相似文献   

14.
The crystal structure of [CaMn3] (Mn4)O12 has been refined with the Rietveld method by using neutron powder diffraction data. This compound is trigonal with the perovskite-like [NaMn3] (Mn4)O12 arrangement. The trigonality is due to the 1:3 order between Mn4+ and Mn3+ on the octahedral sites. [CaMn3] (Mn4)O12 contains two different types of Mn3+ Jahn-Teller distorted polyhedra: the first, which is found in all the AC3B4O12 compounds is a rhombic prism, while the second is an apically contracted octahedron, which represents a new type of Jahn-Teller distortion for Mn3+ cations in oxide compounds.  相似文献   

15.
The absorption spectrum of RbMnF3 and the excitation spectra of the system RbMgxMn1-xF3 at 10 K as well as the fluorescence spectra and lifetimes of Mn2+ in the systems RbMgxMn1-xF3 and KMgxMn1-xF3 in the region 10–300 K were measured. The lifetime and fluorescence temperature dependence suggest that the origin of the fluorescence occurs at Mn2+ sites slightly perturbed by impurity ions and that a non-radiative energy transfer mechanism is responsible for the observed thermal quenching. By using different Mn2+ concentrations in the above systems the dependence of the energy transfer on the Mn2+ concentration is shown. Finally, a preliminary observation on laser stimulated Mn2+ luminescence in the system RbMgxMn1-xF3 is reported.  相似文献   

16.
X-band room temperature EPR spectra have been recorded for Mn2+ ion doping unannealed (La2O3)0.95(CeO2)0.05 host crystal. The data are analysed using a rigorous least-squares fitting procedure in which a large number of lines characterized by ΔM = ± 1, Δm = 0 transition, obtained for several orientations of the static magnetic field, are simultaneously fitted. Combined with the knowledge of the absolute sign of the hyperfine interaction parameter. A, the hyperfine Hamiltonian parameters A, B, Q as reported in this paper, are given with their correct signs. The information on the linewidth is used to deduce the deviation of the crystal-field axes of different Mn2+ ions from the c axis; on the basis of the model proposed here these deviations are found to be between 0 and 10°.  相似文献   

17.
In an attempt to determine the magnetic structures of the heavy rare earth manganites of perovskite type, we have studied first the antiferromagnetic order of manganese in YMnO3. The Néel temperature is about 42 K, the Mn3+ ordering is a helix and derives from an A mode. The propagation vector of the helical structure is along the b axis: k=[0 ky 0] with ky= 0.0786. The Mn3+ ions carry a magnetic moment of only 3.10 ± 0.1 μB at 4.2 K. We present a phase diagram of helical and collinear modes in terms of exchange integrals.  相似文献   

18.
Alkaline hexafluorostantanate red phosphors Na2SnF6:Mn4+ and Cs2SnF6:Mn4+ are synthesized by chemical reaction in HF/NaMnO4 (CsMnO4)/H2O2/H2O mixed solutions immersed with tin metal. X-ray diffraction patterns suggest that the synthesized phosphors have a tetragonal symmetry with the space group D4h14 (Na2SnF6:Mn4+) and a trigonal symmetry with the space group D3d3 (Cs2SnF6:Mn4+). Photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and the Raman scattering techniques are used to investigate the optical properties of the phosphors. The Franck-Condon analysis of the PLE data yields the Mn4+-related optical transitions to occur at ∼2.39 and ∼2.38 eV (4A2g4T2g) and at ∼2.83 and ∼2.76 eV (4A2g4T1g) for Na2SnF6:Mn4+ and Cs2SnF6:Mn4+, respectively. The crystal field parameters (Dq) of the Mn4+ ions in the Na2SnF6 and Cs2SnF6 hosts are determined to be ∼1930 and ∼1920 cm−1, respectively. Temperature-dependent PL measurements are performed from 20 to 440 K in steps of 10 K, and the obtained results are interpreted by taking into account the Bose-Einstein occupation factor. Comprehensive discussion is given on the phosphorescent properties of a family of Mn4+-activated alkaline hexafluoride salts.  相似文献   

19.
Multi-color long lasting phosphorescent (LLP) phenomenon in β-Zn3(PO4)2:Mn2+,Zr4+ was systematically investigated. It is found that the red (λEm=616 nm) LLP performance of Mn2+ such as brightness and duration is largely improved, and that the blue (λEm=475 nm) LLP of Zr4+ with lower intensity appears when Zr4+ ions are co-doped into the matrix. The fluorescence, phosphorescence and thermoluminescence (TL) spectra show that Mn2+ ion is solely expected as a luminescent center, while Zr4+ ion not only acts as a luminescent center, but also induces an electron trap (TrapZr) associated with a TL peak at 344 K. The trap depth for TrapZr is 0.25 eV, while that for the intrinsic trap is 0.38 eV, associated with a dominant peak at 385 K for Zn3(PO4)2:Mn2+. The Zr4+-induced trap with suitable depth is responsible for the improvement of the red LLP of Mn2+ ion and the appearance of the blue LLP of Zr4+ ion. The LLP mechanism is also investigated.  相似文献   

20.
Electron spin resonance has been observed for Fe3+ and Mn2+ ions occupying sites with trigonal symmetry in undoped and doped Verneuil-grown crystals of the ilmenite type compound MgTiO3. At 300 K, the fine structure parameters in the spin Hamiltonian are (in 10?4cm?1) D = +844 (± 1), (a? F) = +118 (± 1), a = 69 (± 7) for Fe3+ and D = +164 (± 1), (a ? F) = +10.2 (± l), a = 7.0 (± 1) for Mn2+. These values are compared with literature data for Fe3+ and Mn2+ in other oxides, especially Al2o3, with particular reference to the recent “superposition” theory of the effect of a trigonal distortion. From the orientation of the axes of cubic pseudosymmetry of the spin Hamiltonian, and with the assumption that a has the same sign for both ions, it is proposed that Fe3+ and Mn2+ occupy the same octahedral site, namely the Mg2+ site. Anomalous line splittings observed for one sample were attributed to twinning on (0001) or {1120} planes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号