首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density (Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.  相似文献   

2.
Electron density for alloys which have close-packed metallic structures is calculated by assigning valence electrons to octahedral and tetrahedral interstices, a method which has been previously used for elemental metals. Some localization of electron density is proposed for β -phases when there is considerable difference in ion core sizes. This method of characterizing electron density in alloys can be used to derive structures with the amount of electron transfer if an assumption is made for the volume fraction occupied by each component of the alloy. In general, the electronic structure of intermetallic phases appears to be dominated by the correspondence of a definite number of valence electrons with the number of interstices in the metallic structure (the Hume-Rothery ea ratios). The model used can also accommodate electron distributions which include both ionic and covalent components of electron density. This is the case for Laves phases and the metallic A-15 compounds. There is a preponderance of intermetallic phases where one component is a d-shell metal. Evidence is presented that in several such alloys there is a change in d-shell configuration of the elemental metal which serves to minimize size differences of the ion cores of the alloy.  相似文献   

3.
The structural, electronic and optical properties of the binary silicon–germanium alloy have been investigated using the projector augmented-wave (PAW) calculations with a powerful VASP package (Vienna ab initio simulation package). The structural properties of Si0.5Ge0.5 alloy have been calculated using total energy calculations and compared with our empirical model of bulk modulus. The electronic band structure and density of state of Si0.5Ge0.5 alloy show that the conduction band minimum (CBM) is located at the X point and the valence band maximum (VBM) is located at the Г point, resulting in indirect (ГX) energy band gap of 0.48 eV. The results of the refractive index and optical dielectric constant of Si0.5Ge0.5 alloy are also obtained. The PAW's results are in good agreement with experimental, theoretical and our model results.  相似文献   

4.
The structural properties and microscopic collective dynamics of atoms in the amorphous metallic alloy Ni33Zr67 are studied using molecular dynamics simulations with a pair-additive model potential. The calculated equilibrium structural and dynamic characteristics are compared with experimental data on neutron diffraction and inelastic X-ray scattering. Theoretical analysis of the structural relaxation of microscopic density fluctuations for amorphous metallic alloys is performed within the Lee’s recurrent relation approach. The results of theoretical calculations for the intensity of scattering I(k, ω) for the amorphous metallic alloy Ni33Zr67 are in good agreement with the results of computer simulation and experimental inelastic X-ray scattering data. The low-frequency excitations observed in the longitudinal current spectra are related to the vibrational motions of individual atom clusters, which include Ni and Zr atoms.  相似文献   

5.
H.P. Wang 《Physics letters. A》2010,374(24):2489-2493
The densities of liquid Ni-Cu-Fe ternary alloy system were investigated by molecular dynamics method in combination with a MEAM (Modified Embedded Atom Method) potential model. The temperature range is from 1000 to 2200 K, including both a broad superheating range and a large undercooled regime. The densities of six Ni100−2xCuxFex alloys (x=0,10,20,30,40,50) decrease linearly with the rise of temperature at the superheated and undercooled states, and increase with the enhancement of Ni content. Among the simulated alloys, the densities of only liquid pure Ni and Ni60Cu20Fe20 alloy are available in literatures, which are in good agreement with the calculated values. According to the relationship between the excessive volume and the alloy composition, it can be deduced that Ni100−2xCuxFex alloys deviate from ideal solution. Moreover, a comparison was also performed between the calculated results and the approximated values by Neumann-Kopp's rule. Based on the obtained density data, the thermal expansion coefficients are also derived. It firstly decreases to a minimum value, and then displays a rise with the increase of Ni content.  相似文献   

6.
Using ab initio pseudopotential method within the local density approximation we have investigated the electronic properties of SixSn1−x semiconducting alloy. The bowing parameter of the band-gap energy variation with alloy concentration is found to be large. We also analyzed its origin in terms of chemical and structural effects.  相似文献   

7.
We propose a hybridized kinetic energy functional, aTTF+bTvW, where TTF is the Thomas-Fermi functional and TvW the von Weizsäcker functional while a and b are adjustable parameters. The new functional is implemented in orbital-free plane-wave density functional method, in which a conjugate-gradient line-search scheme of electronic minimization is incorporated. Calculations with the fitted a and b show that this kinetic energy functional can describe the structures of small Si, Al and Si-Al alloy clusters with reasonable accuracy.  相似文献   

8.
The first-principle calculations within density functional theory are used to investigate the electronic structure and magnetism of the Mn2ZnGe Heusler alloy with CuHg2Ti-type structure. The half-metallic ferrimagnets (HMFs) in Mn2ZnGe are predicted. The energy gap lies in the minority-spin band for the Mn2ZnGe alloy. The calculated total spin magnetic moment is −2μB per unit cell for Mn2ZnGe alloy, the magnetic moments of Zn and Mn(B) are antiparallel to that of Mn(A), and we also found that the half-metallic properties of Mn2ZnGe are insensitive to the dependence of lattice within the wide range of 5.69 and 5.80 Å where exhibiting perfect 100% spin polarization at the Fermi energy.  相似文献   

9.
We show that the local impurity density of states and the impurity electron—electron interactions can be obtained from impurity Auger spectra. For a Ag0.95Pd0.05 alloy we find 11% Pd(d) character in the Ag d band and Pd(4d-4d) Coulomb interactions which are much larger than the virtual bound state widths.  相似文献   

10.
The formation of a short-range order in an Fe-Ga bcc alloy has been studied by Monte Carlo simulation with the use of effective interaction potentials calculated within the density functional theory for the ferromagnetic and paramagnetic states. It has been found that the pronounced short-range order of the D03 type is formed at Ga concentrations close to the boundary of the two-phase region at T < T c, whereas no short-range order is observed at T < T c. The results obtained are in agreement with the experimental X-ray diffraction analysis. The relation of the features of the short-range order in the Fe-Ga alloy to the magnetostriction value has been discussed.  相似文献   

11.
A simplified model of the Jahn-Teller band effect in a conducting ferromagnet with two degenerate subbands with the peak density of states of itinerant electrons is considered. It is found that the martensite transition temperature in a narrow-band conductor as a function of the position of the Fermi level near the peak of the energy density of states varies nonmonotonically in the narrow spin electron subband. The magnetic field dependence of the martensite-austenite structural phase transition temperature in the ferromagnet is analyzed. The developed theory and calculated data for the electron density of states in Ni2MnGa are used as the basis for estimating the variation of the martensite transition temperature with the magnetic field (?T m /?H), which demonstrates a satisfactory agreement with experimental data for the Heusler alloy Ni2+x Mn1?x FeyGa1?y .  相似文献   

12.
The measured electrical conductivity of g-Ge1−xSnxSe2 bulk alloy glasses is shown to be strongly correlated with the behavior of the Sn tetrahedral fraction and the Raman A1 companion mode amplitude, both of which measure the density of intrinsic defects and which were previously found to be signatures of a molecular cluster network. The correlation is interpreted in terms of the variation with alloying of localized electronic states associated with the structure of this network.  相似文献   

13.
Using a state-of-the-art full-potential electronic structure method within the generalized gradient approximation (GGA), we study the electronic structure and magnetic properties of the Mn2CuSi full-Heusler alloy. Calculations show that CuHg2Ti-type structure alloy is a half-metallic ferrimagnet with the Fermi level (εF) being located within a tiny gap of the minority-spin density of states. The conduction electron at εF keeps a 100% spin polarization. A total spin moment, which is mainly due to the antiparallel configurations of the Mn partial moments, is −1.00μB for a wide range of equilibrium lattice parameters. Simultaneously, the small spin magnetic moments of Cu and Si atoms are antiparallel. The gap mainly originates from the hybridization of the d states of the two Mn atoms. Thus, Mn2CuSi may be the compound of choice for further experimental investigations.  相似文献   

14.
In order to determine systematic changes in the density of states with alloy composition, photoelectron spectra at hv=21.2 eV were measured for several amorphous alloys based on the well-known Pd-Si glass system. Three binary alloys with 15, 20, and 25 at. % Si, two ternaries, Pd80 Si17 Cu3 and Pd80 Si14 Cu6, and polycrystalline Pd were analyzed. Compared to Pd, both the density of states at the Fermi energy and the d-band width are reduced in the glasses. The d-bands display an overall shift of 0.4 eV over the range of alloy compositions studied. Partial agreement with recent density of states calculations was obtained.  相似文献   

15.
The vertex equation for a Cooper pair is solved for Tc of an A—B alloy, assuming a single-site interaction between electrons. The result depends on the partial densities of state NA(O), NB(O), the intra-atomic Coulomb repulsions, and the attractive interaction which contains the normal-mode density g(z) and the matrix elements of the ion-potential gradients between two electrons at one and the same site.  相似文献   

16.
In the present study, the magnetic properties and microstructures of newly developed Fe–Cu–Si–B alloys prepared by annealing the melt-spun ribbon have been studied. The average size and number density of nanocrystalline grains were about 20 nm and 1023–1024 m−3, respectively. The saturation magnetic flux density Bs for the present alloy is more than 1.8 T, that is about 10% larger than that of Fe-based amorphous alloys. Moreover, core loss P of the present alloy is about half of that of Si-steel up to B=1.7 T.  相似文献   

17.
The structural, elastic and phonon properties of Mg2Si1?xSnx alloy are investigated by performing density functional theory and density functional perturbation theory calculations. The calculated lattice parameter increases with the increase of Sn content obeying Vegard’s Law that is in good agreement with available experimental data. Shear modulus, Young’s modulus and sound velocities are determined from the obtained elastic constants. Phonon dispersion curves show a pronounced softening with increasing of Sn content. The softening mechanism has been discussed based upon the element mass and bond strength. Besides, phonon contribution to the Helmholtz free energy, the entropy and the constant-volume heat capacity are calculated within the harmonic approximation based on the calculated phonon density of states. Results show Mg2Si1?xSnx is thermodynamically more stable with higher Sn content.  相似文献   

18.
The contribution of clusters of different sizes to magnetism and the switching of electron scattering mechanisms in amorphous Fe67Cr18B15 alloy during ion Ar+ irradiation is studied. The cluster magnetism is found to be related to the presence of clusters of the following two types: large α-(Fe, Cr) clusters of size D = 150–250 Å and small (D = 40–80 Å) clusters in a random intercluster medium. The generation of small ferromagnetic and antiferromagnetic clusters during ion irradiation leads to the formation of cluster glass, which affects the electrical properties of the alloy and causes a magnetic frustration. The temperature dependence of the barrier height is shown to characterize the magnetic state of the alloy in low fields. On the whole, the temperature dependence of the order parameter is a universal characteristic of the system. The temperature dependence of resistivity of initial alloys in the temperature range 98–300 K (ρ(T) ∝ T2) is determined by electron scattering by quantum defects, and the transition into a ferromagnetic state is revealed when the derivative ?ρ/?TT is analyzed. The increase in resistivity and the relation ρ ∝ T1/2 in strongly inhomogeneous samples after irradiation at a dose Φ = 1.5 × 1018 ions/cm2 are caused by weak localization effects, and the transition to a ferromagnetic state becomes obvious when the derivative ?ρ/?T ∝ T–1/2 is considered. Irradiation by fluence Φ = 3 × 1018 ions/cm2 induces a giant (twofold) increase in the alloy density, restores the ferromagnetism of large clusters, decreases the resistivity by 37%, and restores the relation ρ(T) ∝ T2, which results from the overlapping of the irradiation-induced small clusters when their concentration increases and from an increase in the alloy density. The overlapping of clusters lowers the barrier height and decreases the sensitivity of the alloy to an applied field. The relation ρ(T) ∝ T2 is valid for the entire temperature range T = 2–300 K because of the partial screening of the magnetic moments of large clusters by a medium having the properties of cluster glass.  相似文献   

19.
The magnetization, the electrical resistivity, the specific heat, the thermal conductivity, and the thermal diffusion of a polycrystalline Heusler alloy Ni45.37Mn40.91In13.72 sample are studied. Anomalies, which are related to the coexistence of martensite and austenite phases and the change in their ratio induced by a magnetic field and temperature, are revealed and interpreted. The behavior of the properties of the alloy near Curie temperature TC also demonstrates signs of a structural transition, which suggests that the detected transition is a first-order magnetostructural phase transition. The nontrivial behavior of specific heat detected near the martensite transformation temperatures is partly related to a change in the electron density of states near the Fermi level. The peculiar peak of phonon thermal conductivity near the martensitic transformation is interpreted as a consequence of the appearance of additional soft phonon modes, which contribute to the specific heat and the thermal conductivity.  相似文献   

20.
Electron diffraction is used to show (for the first time) that the reverse α → γ transformation in an Fe-32% Ni during slow heating develops via the formation of an intermediate paramagnetic 9R phase. Coarse extended lamellae form according to a shear mechanism in the central part of the temperature range of the reverse transformation, which is called the critical range (here, the physical properties of the alloy change anomalously). The extended lamellae consist of 9R-phase lamellae with γ-phase interlayers. A high density of periodic stacking faults in the structure of the 9R phase and a high density of chaotic stacking faults in the complex 9R + γ phase determine the nature of phase transformation-induced hardening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号