首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two series of heavy alkaline earth metal pyrazolates, [M(Ph(2)pz)(2)(thf)(4)] 1 a-c (Ph(2)pz=3,5-diphenylpyrazolate, M=Ca, Sr, Ba; THF=tetrahydrofuran) and [M(Ph(2)pz)(2)(dme)(n)] (M=Ca, 2 a, Sr, 2 b, n=2; M=Ba, 2 c, n=3; DME=1,2-dimethoxyethane) have been prepared by redox transmetallation/ligand exchange utilizing Hg(C(6)F(5))(2). Compounds 1 a and 2 b were also obtained by redox transmetallation with Tl(Ph(2)pz). Alternatively, direct reaction of the alkaline earth metals with 3,5-diphenylpyrazole at elevated temperatures under solventless conditions yielded compounds 1 a-c and 2 a-c upon extraction with THF or DME. By contrast, [M(Me(2)pz)(2)(Me(2)pzH)(4)] 3 a-c (M=Ca, Sr, Ba; Me(2)pzH=3,5-dimethylpyrazole) were prepared by protolysis of [M[N(SiMe(3))(2)](2)(thf)(2)] (M=Ca, Sr, Ba) with Me(2)pzH in THF and by direct metallation with Me(2)pzH in liquid NH(3)/THF. Compounds 1 a-c and 2 a-c display eta(2)-bonded pyrazolate ligands, while 3 a,b exhibit eta(1)-coordination. Complexes 1 a-c have transoid Ph(2)pz ligands and an overall coordination number of eight with a switch from mutually coplanar Ph(2)pz ligands in 1 a,b to perpendicular in 1 c. In eight coordinate 2 a,b the pyrazolate ligands are cisoid, whilst 2 c has an additional DME ligand and a metal coordination number of ten. By contrast, 3 a,b have octahedral geometry with four eta(1)-Me(2)pzH donors, which are hydrogen-bonded to the uncoordinated nitrogen atoms of the two trans Me(2)pz ligands. The application of synthetic routes initially developed for the preparation of lanthanoid pyrazolates provides detailed insight into the similarities and differences between the two groups of metals and structures of their complexes.  相似文献   

2.
Treatment of the complex [U(Tren(TMS))(Cl)(THF)] [1, Tren(TMS) = N(CH(2)CH(2)NSiMe(3))(3)] with Me(3)SiI at room temperature afforded known crystalline [U(Tren(TMS))(I)(THF)] (2), which is reported as a new polymorph. Sublimation of 2 at 160 °C and 10(-6) mmHg afforded the solvent-free dimer complex [{U(Tren(TMS))(μ-I)}(2)] (3), which crystallizes in two polymorphic forms. During routine preparations of 1, an additional complex identified as [U(Cl)(5)(THF)][Li(THF)(4)] (4) was isolated in very low yield due to the presence of a slight excess of [U(Cl)(4)(THF)(3)] in one batch. Reaction of 1 with one equivalent of lithium dicyclohexylamide or bis(trimethylsilyl)amide gave the corresponding amide complexes [U(Tren(TMS))(NR(2))] (5, R = cyclohexyl; 6, R = trimethylsilyl), which both afforded the cationic, separated ion pair complex [U(Tren(TMS))(THF)(2)][BPh(4)] (7) following treatment of the respective amides with Et(3)NH·BPh(4). The analogous reaction of 5 with Et(3)NH·BAr(f)(4) [Ar(f) = C(6)H(3)-3,5-(CF(3))(2)] afforded, following addition of 1 to give a crystallizable compound, the cationic, separated ion pair complex [{U(Tren(TMS))(THF)}(2)(μ-Cl)][BAr(f)(4)] (8). Reaction of 7 with K[Mn(CO)(5)] or 5 or 6 with [HMn(CO)(5)] in THF afforded [U(Tren(TMS))(THF)(μ-OC)Mn(CO)(4)] (9); when these reactions were repeated in the presence of 1,2-dimethoxyethane (DME), the separated ion pair [U(Tren(TMS))(DME)][Mn(CO)(5)] (10) was isolated instead. Reaction of 5 with [HMn(CO)(5)] in toluene afforded [{U(Tren(TMS))(μ-OC)(2)Mn(CO)(3)}(2)] (11). Similarly, reaction of the cyclometalated complex [U{N(CH(2)CH(2)NSiMe(2)Bu(t))(2)(CH(2)CH(2)NSiMeBu(t)CH(2))}] with [HMn(CO)(5)] gave [{U(Tren(DMSB))(μ-OC)(2)Mn(CO)(3)}(2)] [12, Tren(DMSB) = N(CH(2)CH(2)NSiMe(2)Bu(t))(3)]. Attempts to prepare the manganocene derivative [U(Tren(TMS))MnCp(2)] from 7 and K[MnCp(2)] were unsuccessful and resulted in formation of [{U(Tren(TMS))}(2)(μ-O)] (13) and [MnCp(2)]. Complexes 3-13 have been characterized by X-ray crystallography, (1)H NMR spectroscopy, FTIR spectroscopy, Evans method magnetic moment, and CHN microanalyses.  相似文献   

3.
The reaction of ScCl(3)(THF)(3) or YCl(3) in a 1:1 molar ratio under reflux for 8 h with [{Li(bdmpza)(H(2)O)}(4)] [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], [{Li(bdmpzdta)(H(2)O)}(4)] [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], and (Hbdmpze) [bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] affords the corresponding complexes [MCl(2)(kappa(3)-bdmpzx)(THF)] (x = a, M = Sc (1), Y (2); x = dta, M = Sc (3), Y (4); x = e, M = Sc (5), Y (6)). However, when the reaction was carried out for 1 h under reflux between ScCl(3)(THF)(3) and [{Li(bdmpzdta)(H(2)O)}(4)], a new anionic complex [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) was obtained. Reaction of [{Li(bdmpza)(H(2)O)}(4)] with YCl(3) in a 2:1 molar ratio under reflux for 8 h gave the complex [YCl(kappa(3)-bdmpza)(2)] (8). The same reaction, but with the lithium compound [{Li(bdmpzdta)(H(2)O)}(4)], led to the formation of an anionic complex [Li(THF)(4)][YCl(3)(kappa(3)-bdmpzdta)] (9). The X-ray crystal structures of 7 and 9 were established. Finally, the addition of 1 equiv of [{Li(bdmpza)(H(2)O)}(4)] or [{Li(bdmpzdta)(H(2)O)}(4)] to a solution of YCl(3) in THF under reflux, followed by the addition of 1 equiv of 1,10-phenanthroline, resulted in the formation of the corresponding complexes [YCl(2)(kappa(3)-bdmpzx)(phen)] (x = a (10), x = dta (11)). These complexes are the first examples of group 3 metals stabilized by heteroscorpionate ligands. In addition, we have explored the reactivity of some of these complexes with alcohols and amides. For example, the direct reaction of [YCl(2)(kappa(3)-bdmpza)(THF)] (2) with several alcohols gave the alkoxide complexes [YCl(kappa(3)-bdmpza)(OR)] (R = Et (12), iPr (13)). Finally, the reaction between [ScCl(2)(kappa(3)-bdmpzdta)(THF)] (3) or [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) and LiN(SiMe(3))(2).Et(2)O in 1:1 and 1:2 molar ratios gave rise to the complexes [ScCl(kappa(3)-bdmpzdta){N(SiMe(3))(2)}] (14) and [Sc(kappa(3)-bdmpzdta){N(SiMe(3))(2)}(2)] (15), respectively.  相似文献   

4.
The preparation of divalent Mo complexes of dipyrrolide dianions was carried out by reacting Mo(2)(acetate)(4) with the dipotassium salts of Ph(2)C(2-C(4)H(3)NH)(2) and 2-[1,1-bis(1H-pyrrol-2-yl)ethyl]pyridine. The two reactions respectively afforded the diamagnetic [[Ph(2)C(C(4)H(3)N)(2)](2)Mo(2)(OAc)(2)[K(THF)(3)][K(THF)]].THF (1) and [[(2-C(5)H(4) N)(CH(3))C(2-C(4)H(3)N)(2)]Mo(OAc)[K(THF)]](2).THF (2). Both compounds retained two acetate units in the dimetallic structure. Conversely, the reaction of Me(8)Mo(2)Li(4)(THF)(4) with Et(2)C(2-C(4)H(3)NH)(2) afforded the paramagnetic dimer [[Et(2)C(C(4)H(3)N)(2)](4)Mo(2)Li(2)][Li(THF)(4)](2).0.5THF (3). The paramagnetism is most likely caused by the 45 degree rotation of the two Mo(dipyrrolide) units with respect to each other and which, in turn, is caused by the presence of two lithium cations in the molecular structure.  相似文献   

5.
Cyclic trinuclear complexes [Pd(3)(mu-pz)(6)] (1) and [Pd(3)(mu-4-Mepz)(6)] (2) and dinuclear complex [Pd(2)(mu-3-t-Bupz)(2)(3-t-Bupz)(2)(3-t-BupzH)(2)] (3) have been prepared by the reactions of [PdCl(2)(CH(3)CN)(2)] with pyrazole (pzH), 4-methylpyrazole (4-MepzH), and 3-tert-butylpyrazole (3-t-BupzH), respectively, in CH(3)CN in the presence of Et(3)N. In the absence of the base, treatment of [PdCl(2)(CH(3)CN)(2)] with pzH gave the mononuclear complex, [Pd(pzH)(4)]Cl(2) (6). The reaction of [PtCl(2)(C(2)H(5)CN)(2)] with pzH in the presence of Et(3)N under refluxing in C(2)H(5)CN afforded the known dimeric Pt(II) complex, [Pt(pz)(2)(pzH)(2)](2) (7). The protons participating in the hydrogen bonding in 3 and 7 are easily replaced by silver ions to give the heterotetranuclear complex [Pd(2)Ag(2)(mu-3-t-Bupz)(6)] (4) and the heterohexanuclear complex [Pt(2)Ag(4)(mu-pz)(8)] (5). The complexes 1-6 are structurally characterized.  相似文献   

6.
Heteropolynuclear Pt(II) complexes with 3,5-diphenylpyrazolate [Pt(2)Ag(4)(μ-Cl)(2)(μ-Ph(2)pz)(6)] (3), [Pt(2)Ag(2)Cl(2)(μ-Ph(2)pz)(4)(Ph(2)pzH)(2)] (4), [Pt(2)Cu(2)Cl(2)(μ-Ph(2)pz)(4)(Ph(2)pzH)(2)] (5), [Pt(2)Ag(4)(μ-Cl)(μ-Me(2)pz)(μ-Ph(2)pz)(6)] (7), and [Pt(2)Ag(4)(μ-Me(2)pz)(2)(μ-Ph(2)pz)(6)] (8) have been prepared and structurally characterized. These complexes are luminescent except for 5 in the solid state at an ambient temperature with emissions of red-orange (3), orange (4), yellow-orange (7), and green (8) light, respectively. Systematic red shift of the emission energies with the number of chloride ligands was observed for 3, 7, and 8. DFT calculations indicate that the highest occupied molecular orbital (HOMO) as well as HOMO-1 of the heterohexanuclear complexes, 3, 7, and 8, having Pt(2)Ag(4) core, mainly consist of dδ orbital of Pt(II) and π orbitals of Ph(2)pz ligands, while the lowest unoccupied molecular orbital (LUMO) of these complexes mainly consists of in-phase combination of 6p of two Pt(II) centers and 5p of four Ag(I) centers. It is likely that the emissions of 3, 7, and 8 are attributed to emissive states derived from the Pt(2)(d)/π → Pt(2)Ag(4) transitions, the emission energy of which depends on the ratio of chloride ligands to pyrazolate ligands.  相似文献   

7.
The pyrazolato complexes [(Me(2)pz)(THF)Li] (1), [((t)Bu(2)pz)Li](4) (2), [((t)Bu(2)pzH)((t)()Bu(2)pz)Li](2) (2a), [(Me(2)pz)Na] (3), [((t)Bu(2)pz)Na](4), [((t)Bu(2)pz)(6)(OH)Na(7)] (4a), [((t)Bu(2)pz)(18-crown-6)Na] (4b), and [((t)Bu(2)pz)K] (5) were synthesized by metalation reactions between R(2)pzH (R = Me, (t)()Bu) and alkyllithium, elemental sodium, or potassium. All the complexes were characterized by spectroscopic methods and microanalysis, and in addition, the crystal structures of 2, 2a, 3, 4a, 4b, and 5 were obtained by single-crystal X-ray diffraction. They show monomeric, dimeric, cluster, and 1D chain structures in the solid state. Ab initio calculations on the structure and stabilities of the monomeric pzM complexes were performed at the MP2 level of theory showing good agreement with the coordination preferences of the pyrazolato ligand to a particular alkali ion.  相似文献   

8.
Reactions of the lithiated diamido-pyridine or diamido-amine ligands Li(2)N(2)N(py) or Li(2)N(2)N(am) with [W(NAr)Cl(4)(THF)] (Ar = Ph or 2,6-C(6)H(3)Me(2); THF = tetrahydrofuran) afforded the corresponding imido-dichloride complexes [W(NAr)(N(2)N(py))Cl(2)] (R = Ph, 1, or 2,6-C(6)H(3)Me(2), 2) or [W(NAr)(N(2)N(am))Cl(2)] (R = Ph, 3, or 2,6-C(6)H(3)Me(2), 4), respectively, where N(2)N(py) = MeC(2-C(5)H(4)N)(CH(2)NSiMe(3))(2) and N(2)N(am) = Me(3)SiN(CH(2)CH(2)NSiMe(3))(2). Subsequent reactions of 1 with MeMgBr or PhMgCl afforded the dimethyl or diphenyl complexes [W(NPh)(N(2)N(py))R(2)] (R = Me, 5, or Ph, 6), respectively, which have both been characterized by single crystal X-ray diffraction. Reactions of Li(2)N(2)N(py) or Li(2)N(2)N(am) with [Mo(NR)(2)Cl(2)(DME)] (R = (t)Bu or Ph; DME = 1,2-dimethoxyethane) afforded the corresponding bis(imido) complexes [Mo(NR)(2)(N(2)N(py))] (R = (t)Bu, 7, or Ph, 8) and [Mo(N(t)Bu)(2)(N(2)N(am))] (9).  相似文献   

9.
The heteroscorpionate ligands [HB(taz)(2)(pz(R))](-) (pz(R) = pz, pz(Me2), pz(Ph)) and [HB(taz)(pz)(2)](-), synthesised from the appropriate potassium hydrotris(pyrazolyl)borate salt and 4-ethyl-3-methyl-5-thioxo-1,2,4-triazole (Htaz), react with [{Rh(cod)(μ-Cl)}(2)] to give [Rh(cod)Tx] {Tx = HB(taz)(2)(pz), HB(taz)(2)(pz(Me2)), HB(taz)(2)(pz(Ph)), HB(taz)(pz)(2)}; the heteroscorpionate rhodaboratrane [Rh{B(taz)(2)(pz(Me2))}{HB(taz)(2)(pz(Me2))}] is the only isolable product from the reaction of [{Rh(nbd)(μ-Cl)}(2)] with K[HB(taz)(2)(pz(Me2))]. Carbonylation of the cod complexes gave a mixture of [Rh(CO)(2)Tx] and [(RhTx)(2)(μ-CO)(3)] which reacts with PR(3) to give [Rh(CO)(PR(3))Tx] (R = Cy, NMe(2), Ph, OPh). In the solid state the complexes are square planar with the particular structure dependent on the steric and/or electronic properties of the scorpionate and ancillary ligands. The complex [Rh(cod){HB(taz)(pz)(2)}] has the heteroscorpionate κ(2)[N(2)]-coordinated to rhodium with the B-H bond directed away from the rhodium square plane while [Rh(cod){HB(taz)(2)(pz(Me2))}] is κ(2)[SN]-coordinated, with the B-H bond directed towards the metal. The complexes [Rh(CO)(PPh(3)){HB(taz)(2)(pz)}] and [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Me2))}] are also κ(2)[SN]-coordinated but with the pyrazolyl ring cis to PPh(3); in the former the B-H bond is directed towards rhodium while in the latter the ring is pseudo-parallel to the rhodium square plane, as also found for [Rh(CO)(2){HB(taz)(2)(pz(Me2))}]. The analogues [Rh(CO)(PR(3)){HB(taz)(2)(pz(Me2))}] (R = Cy, NMe(2)) have the phosphines trans to the pyrazolyl ring. Uniquely, [Rh(CO)(PPh(3)){HB(taz)(2)(pz(Ph))}] is κ(2)[S(2)]-coordinated. A qualitative mechanism is given for the rapid ring-exchange, and hence isomerisation, observed in solution.  相似文献   

10.
Ruthenium nitrosyl complexes containing the Kl?ui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)), 2,2'-bipyridyl (bpy) (3·[OTf](2)), N,N,N'N'-tetramethylethylenediamine (4·[OTf](2)). Anion metathesis of 3·[OTf](2) with HPF(6) and HBF(4) gave 3·[PF(6)](2) and 3·[BF(4)](2), respectively. Similarly, the PF(6)(-) salt 4·[PF(6)](2) was prepared by the reaction of 4·[OTf](2) with HPF(6). The irradiation of [L(OEt)Ru(NO)Cl(2)] (1) with UV light in CH(2)Cl(2)-MeCN and tetrahydrofuran (thf)-H(2)O afforded [L(OEt)RuCl(2)(MeCN)] (5) and the chloro-bridged dimer [L(OEt)RuCl](2)(μ-Cl)(2) (6), respectively. The photolysis of complex [2][OTf](2) in MeCN gave [L(OEt)Ru(dtbpy)(MeCN)][OTf](2) (7). Refluxing complex 5 with RNH(2) in thf gave [L(OEt)RuCl(2)(NH(2)R)] (R = tBu (8), p-tol (9), Ph (10)). The oxidation of complex 6 with PhICl(2) gave [L(OEt)RuCl(3)] (11), whereas the reduction of complex 6 with Zn and NH(4)PF(6) in MeCN yielded [L(OEt)Ru(MeCN)(3)][PF(6)] (12). The reaction of 3·[BF(4)](2) with benzylamine afforded the μ-dinitrogen complex [{L(OEt)Ru(bpy)}(2)(μ-N(2))][BF(4)](2) (13) that was oxidized by [Cp(2)Fe]PF(6) to a mixed valence Ru(II,III) species. The formal potentials of the RuL(OEt) complexes have been determined by cyclic voltammetry. The structures of complexes 5,6,10,11 and 13 have been established by X-ray crystallography.  相似文献   

11.
Manganese alkyl complexes stabilised by 2,6-bis(N,N'-2,6-diisopropyl-phenyl)acetaldiminopyridine ((iPr)BIP) have been selectively prepared by reacting suitable alkylmanganese(II) precursors, such as homoleptic dialkyls [(MnR(2))(n)] or the corresponding THF adducts [{MnR(2)(thf)}(2)] with the mentioned ligand. For R=CH(2)CMe(2)Ph or CH(2)Ph, formally Mn(I) derivatives are produced, in which one of the two R groups migrates to the 4-position of the central pyridine ring in the (iPr)BIP ligand. In contrast, a true dialkyl complex [MnR(2)((iPr)BIP)] can be isolated for R=CH(2)SiMe(3). In solution, this compound slowly evolves to the corresponding Mn(I) monoalkyl derivative. A detailed study of this reaction provides insights on its mechanism, showing that it proceeds through successive alkyl migrations, followed by spontaneous dehydrogenation. Protonation of [Mn(CH(2)SiMe(3))(2)((iPr)BIP)] with the pyridinium salt [H(Py)(2)][BAr'(4)] (Ar'=3,5-C(6)H(3)(CF(3))(2)) leads to the cationic species [Mn(CH(2)SiMe(3))(Py)((iPr)BIP)](+). Alternatively, the same complex can be produced by reaction of the pyridine complex [{Mn(CH(2)SiMe(3))(2)(Py)}(2)] with the protonated ligand salt [H(iPr)BIP](+)[BAr'(4)](-). This last reaction allows the synthesis of analogous cationic alkylmanganese(II) derivatives, when precursors of type [MnR(2)((iPr)BIP)] are not available. Treatment of these neutral and cationic (iPr)BIP alkylmanganese derivatives with a range of typical co-catalysts (modified methylaluminoxane (MMAO), B(C(6)F(5))(3), trimethyl or triisobutylaluminum) does not lead to active ethylene polymerisation catalysts.  相似文献   

12.
The surprising transformation of the saturated diamine (iPr)NHCH(2)CH(2)NH(iPr) to the unsaturated diazaethene [(iPr)NCH═CHN(iPr)](2-) via the synergic mixture nBuM, (tBu)(2)Zn and TMEDA (where M = Li, Na; TMEDA = N,N,N',N'-tetramethylethylenediamine) has been investigated by multinuclear NMR spectroscopic studies and DFT calculations. Several pertinent intermediary and related compounds (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2) (3), (TMEDA)Li[(iPr)NCH(2)CH(2)CH(2)N(iPr)]Zn(tBu) (5), {(THF)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (6), and {(TMEDA)Na[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (11), characterized by single-crystal X-ray diffraction, are discussed in relation to their role in the formation of (TMEDA)M[(iPr)NCH═CHN(iPr)]Zn(tBu) (M = Li, 1; Na, 10). In addition, the dilithio zincate molecular hydride [(TMEDA)Li](2)[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)H 7 has been synthesized from the reaction of (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2)3 with nBuLi(TMEDA) and also characterized by both X-ray crystallographic and NMR spectroscopic studies. The retention of the Li-H bond of 7 in solution was confirmed by (7)Li-(1)H HSQC experiments. Also, the (7)Li NMR spectrum of 7 in C(6)D(6) solution allowed for the rare observation of a scalar (1)J(Li-H) coupling constant of 13.3 Hz. Possible mechanisms for the transformation from diamine to diazaethene, a process involving the formal breakage of four bonds, have been determined computationally using density functional theory. The dominant mechanism, starting from (TMEDA)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu) (4), involves the formation of a hydride intermediate and leads directly to the observed diazaethene product. In addition the existence of 7 in equilibrium with 4 through the dynamic association and dissociation of a (TMEDA)LiH ligand, also provides a secondary mechanism for the formation of the diazaethene. The two reaction pathways (i.e., starting from 4 or 7) are quite distinct and provide excellent examples in which the two distinct metals in the system are able to interact synergically to catalyze this otherwise challenging transformation.  相似文献   

13.
The reactions of cis-[MoCl(η(3)-methallyl)(CO)(2)(NCMe)(2)] (methallyl = CH(2)C(CH(3))CH(2)) with Na(NCNCN) and pz*H (pzH, pyrazole, or dmpzH, 3,5-dimethylpyrazole) lead to cis-[Mo(η(3)-methallyl)(CO)(2)(pz*H)(μ-NCNCN-κ(2)N,N)](2) (pzH, 1a; dmpzH, 1b), where dicyanamide is coordinated as bridging ligand. Similar reactions with fac-[MnBr(CO)(3)(NCMe)(2)] lead to the pyrazolylamidino complexes fac-[Mn(pz*H)(CO)(3)(NH═C(pz*)NCN-κ(2)N,N)] (pzH, 2a; dmpzH, 2b), resulting from the coupling of pyrazol with one of the CN bonds of dicyanamide. The second CN bond of dicyanamide in 2a undergoes a second coupling with pyrazole after addition of 1 equiv of fac-[MnBr(CO)(3)(pzH)(2)], yielding the dinuclear doubly coupled complex [{fac-Mn(pzH)(CO)(3)}(2)(μ-NH═C(pz)NC(pz)=NH-κ(4)N,N,N,N)]Br (3). The crystal structure of 3 reveals the presence of two isomers, cis or trans, depending on whether the terminal pyrazoles are coordinated at the same or at different sides of the approximate plane defined by the bridging bis-amidine ligand. Only the cis isomer is detected in the crystal structure of the perchlorate salt of the same bimetallic cation (4), obtained by metathesis with AgClO(4). All the N-bound hydrogen atoms of the cations in 3 or 4 are involved in hydrogen bonds. Some of the C-N bonds of the pyrazolylamidino ligand have a character intermediate between single and double, and theoretical studies were carried out on 2a and 3 to confirm its electronic origin and discard packing effects. Calculations also show the essential role of bromide in the planarity of the tetradentate ligand in the bimetallic complex 3.  相似文献   

14.
The direct reaction of lanthanoid metals with 3,5-diphenylpyrazole (Ph2pzH) at 300 degrees C under vacuum in the presence of mercury gives the structurally characterized [Ln3(Ph2pz)9] (Ln = La or Nd), [Ln2(Ph2pz)6] (Ln = Er or Lu). Similar reactions provided heteroleptic [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er and Y). The last was obtained only from impure Ph2pzH, but was subsequently prepared by treatment of [Yb(Ph2pz)3(thf)2] with Ph2pzH. Reactions of Yb with Ph2pzH at 200 degrees C gave a poorly soluble divalent species which was converted by 1,2-dimethoxyethane into [Yb(Ph2pz)2(dme)2]. Single crystal X-ray structures established a bowed trinuclear pyrazolate-bridged structure for [Ln3(Ph2pz)9] (Ln = La or Nd), Ln...Ln...Ln being 135.94(1) degrees (La) and 137.41(1) degrees(Nd). There are two eta2-Ph2pz ligands on the terminal Ln atoms and one on the central metal with adjacent Ln atoms linked by one mu-eta2:eta2 and one mu-eta5 (to terminal Ln):eta2 pyrazolate group. Thus the terminal Ln atoms are formally nine-coordinate and the central Ln, ten-coordinate. By contrast, [Ln2(Ph2pz)6] (Ln = Er or Lu) complexes are dimeric with two terminal (eta2) and two bridging (mu-eta2:eta2) pyrazolates and eight-coordinate lanthanoids. All six heteroleptic complexes [Ln(Ph2pz)3(Ph2pzH)2] (Ln = La, Nd, Gd, Tb, Er or Yb) are isomorphous with three equatorial eta2-Ph2pz groups, transoid(N-Ln-N 158.18(6)-161.43(9) degrees) eta1-pyrazole ligands, and eight-coordinate Ln throughout.  相似文献   

15.
The new ligand, hydrotris[3-(diphenylmethyl)pyrazol-1-yl]borate, Tp(CHPh2), has been synthesized and its coordination chemistry was compared with that of the analogous Tp(iPr). The new ligand was converted to a variety of complexes, such as M[Tp(CHPh2)]X (M = Co, Ni, Zn; X = Cl, NCO, NCS), Pd[Tp(CHPh2)][eta3-methallyl], Co[Tp(CHPh2)](acac), and Co[Tp(CHPh2)](scorpionate ligand). Compounds Tl[Tp(CHPh2)], 1, Co[Tp(CHPh2)]Cl, 2, Co[Tp(CHPh2)](NCS)(DMF), 3, Ni[Tp(CHPh2)](NCS)(DMF)2, 4, Co[Tp(CHPh2)](acac), 5, Co[Tp(CHPh2)][Ph2Bp], 6, Co[Tp(CHPh2)][Bp(Ph)], 7, Co[Tp(CHPh2)][Tp], 8, and (Ni[Tp(CHPh2)])2[C2O4](H2O)2, 9, were structurally characterized.  相似文献   

16.
A series of dichloroaluminum carboxylates [Cl(2)Al(O(2)CR)](2) (were R = Ph (1a), (t)Bu (1b), CHCH(2) (1c) and C(11)H(23) (1d)) were prepared and extended investigations on their structure and reactivity toward various Lewis bases and H(2)O performed. Compounds [Cl(2)Al(O(2)CR)](2) and their adducts with Lewis bases show a large structural variety, featuring both molecular and ionic forms with different coordination numbers of the metal center and various coordination modes of the carboxylate ligand. Upon addition of a Lewis base of moderate strength the molecular form [Cl(2)Al(O(2)CR)](2) equilibrates with new ionic forms. In the presences of 4-methylpyridine the six-coordinate Lewis acid-base adducts [Cl(2)Al(λ(2)-O(2)CR)(py-Me)(2)] [R = Ph (3a), (t)Bu (3b)] with a chelating carboxylate ligand were formed. The reactions of 1a, 1b, and 1d with 0.33 equiv of H(2)O in THF-toluene solution lead to oxo carboxylates [(Al(3)O)(O(2)CR)(6)(THF)(3)] [AlCl(4)] [where R = Ph (4a(THF)), (t)Bu (4b(THF)), and C(11)H(23) (4d(THF))] in high yield. The similar reaction of 1c in tetrahydrofuran (THF) afforded the chloro(hydroxo)aluminum acrylate [(ClAl)(2)(OH)(O(2)CC(2)H(3))(2) (THF)(4)][AlCl(4)] (5), while the hydrolysis of 1b in MeCN lead to the hydroxoaluminum carboxylate [Al(2)(OH)(O(2)C(t)Bu)(2)(MeCN)(6)][AlCl(4))(3)] (6). All compounds were characterized by elemental analysis, (1)H, (27)Al NMR, and IR spectroscopy, and the molecular structure of 1a, 3a, 3b, 4a(THF), 4b(THF), 4b(py-Me'), 5, and 6 were determined by single-crystal X-ray diffraction. The study provides a platform for testing transformations of secondary building units in Al-Metal-Organic Frameworks toward H(2)O and neutral donor ligands.  相似文献   

17.
Reactions of zirconium dialkyl- or bis(amido)-dichloride complexes "[Zr(CH2SiMe3)2Cl2(Et2O)2]" or [Zr(NMe2)2Cl2(THF)2] with primary alkyl and aryl amines are described. Reaction of "[Zr(CH2SiMe3)2Cl2(Et2O)2]" with RNH2 in THF afforded dimeric [Zr2(mu-NR)2Cl4(THF)4](R=2,6-C6H3iPr2 (1), 2,6-C6H3Me2 (2) or Ph (3)), [Zr2(mu-NR)2Cl4(THF)3](R=tBu (5), iPr (6), CH2Ph (7)), or the "ate" complex [Zr2(mu-NC6F5)2Cl6(THF)2{Li(THF)3}2](4, the LiCl coming from the in situ prepared "[Zr(CH2SiMe3)2Cl2(Et2O)2]"). With [Zr(NMe2)2Cl2(THF)2] the compounds [Zr2(mu-NR)2Cl4(L)x(L')y](R=2,6-C6H3iPr2 (8), 2,6-C6H3Me2 (9), Ph (10) or C6F5 (11); (L)x(L')y=(NHMe2)3(THF), (NHMe2)2(THF)2 or undefined), [Zr2(mu-NtBu)2Cl4(NHMe2)3] (12) and insoluble [Zr(NR)Cl2(NHMe2)]x(R=iPr (13) or CH2Ph (14)) were obtained. Attempts to form monomeric terminal imido compounds by reaction of or with an excess of pyridine led, respectively, to the corresponding dimeric adducts [Zr2(mu-2,6-C6H3Me2)2Cl4(py)4] (15) and [Zr2(mu-NtBu)2Cl4(py)3] (16). The X-ray structures of 1, 2, 4, 8, 12 and 15 have been determined.  相似文献   

18.
Reaction of the proligand Ph2PN(SiMe3)2 (L1) with WCl6 gives the oligomeric phosphazene complex [WCl4(NPPh2)]n, 1 and subsequent reaction with PMe2Ph or NBu4Cl gives [WCl4(NPPh2)(PMe2Ph)] (2) or [WCl5(NPPh2)][NBu4] (3), respectively. DF calculations on [WCl5(NPPh2)][NBu4] show a W=N double bond (1.756 A) and a P-N bond distance of 1.701 A, which combined with the geometry about the P atom suggests, there is no P-N multiple bonding. Reaction of L1 with [ReOX3(PPh3)2] in MeCN (X = Cl or Br) gives [ReX2(NC(CH3)P(O)Ph2)(MeCN)(PPh3)](X = Cl, 4, X = Br, 5) which contains the new phosphorylketimido ligand. It is bound to the rhenium centre with a virtually linear Re-N-C arrangement (Re-N-C angle = 176.6 degrees, when X = Cl) and there is multiple bonding between Re and N (Re-N = 1.809(7) A when X = Cl). The proligand Ph2PNHNMe2(L2H) reacts with [(C5H5)TiCl3] to give [(C5H5)TiCl2(Me2NNPPh2)] (6). An X-ray crystal structure of the complex shows the ligand (L2) is bound by both nitrogen atoms. Reaction of the proligands Ph2PNHNR2[R2 = Me2 (L2H), -(CH2CH2)2NCH3 (L3H), (CH2CH2)2CH2 (L4H)] with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave [RuCl2(eta6-p-MeC6H4iPr)L] {L = L2H (7), L3H (8), L4H (9)}. The X-ray crystal structures of 7-9 confirmed that the phosphinohydrazine ligand is neutral and bound via the phosphorus only. Reaction of complexes 7-9 with AgBF4 resulted in chloride ion abstraction and the formation of the cationic species [RuCl(6-p-MeC6H4iPr)(L)]+ BF4- {(L = L2H (10), L3H (11), L4H (12)}. Finally, reaction of complex 6 with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave the binuclear species [(eta6-p-MeC6H4iPr)Cl2Ru(mu2,eta3-Ph2PNNMe2)TiCl2(C5H5)], 13.  相似文献   

19.
The lithium complexes RP(3,5-tBu2C6H2OLi)2(THF)4, where R = Ph or i Pr, (R[OPO]Li2)2(THF)4, synthesized by reaction of the 2-bromo-4,6-di-tert-butylphenol with BuLi and the appropriate dichlorophosphine, possess solid state structures composed of lithium oxide tetragons arranged in a step-form or face sharing half-cubane arrangements. Incorporation of excess lithium aryloxide results in the formation of complexes that display an extended step-form structure, [Ph[OPO]Li2(ArOLi)]2, or a distorted cubane arrangement of tetragons, [iPr[OPO]Li3Cl(ArOLi)](THF)3.  相似文献   

20.
Structurally similar but charge-differentiated platinum complexes have been prepared using the bidentate phosphine ligands [Ph(2)B(CH(2)PPh(2))(2)], ([Ph(2)BP(2)], [1]), Ph(2)Si(CH(2)PPh(2))(2), (Ph(2)SiP(2), 2), and H(2)C(CH(2)PPh(2))(2), (dppp, 3). The relative electronic impact of each ligand with respect to a coordinated metal center's electron-richness has been examined using comparative molybdenum and platinum model carbonyl and alkyl complexes. Complexes supported by anionic [1] are shown to be more electron-rich than those supported by 2 and 3. A study of the temperature and THF dependence of the rate of THF self-exchange between neutral, formally zwitterionic [Ph(2)BP(2)]Pt(Me)(THF) (13) and its cationic relative [(Ph(2)SiP(2))Pt(Me)(THF)][B(C(6)F(5))(4)] (14) demonstrates that different exchange mechanisms are operative for the two systems. Whereas cationic 14 displays THF-dependent, associative THF exchange in benzene, the mechanism of THF exchange for neutral 13 appears to be a THF independent, ligand-assisted process involving an anchimeric, eta(3)-binding mode of the [Ph(2)BP(2)] ligand. The methyl solvento species 13, 14, and [(dppp)Pt(Me)(THF)][B(C(6)F(5))(4)] (15), each undergo a C-H bond activation reaction with benzene that generates their corresponding phenyl solvento complexes [Ph(2)BP(2)]Pt(Ph)(THF) (16), [(Ph(2)SiP(2))Pt(Ph)(THF)][B(C(6)F(5))(4)] (17), and [(dppp)Pt(Ph)(THF)][B(C(6)F(5))(4)] (18). Examination of the kinetics of each C-H bond activation process shows that neutral 13 reacts faster than both of the cations 14 and 15. The magnitude of the primary kinetic isotope effect measured for the neutral versus the cationic systems also differs markedly (k(C(6)H(6))/k(C(6)D(6)): 13 = 1.26; 14 = 6.52; 15 approximately 6). THF inhibits the rate of the thermolysis reaction in all three cases. Extended thermolysis of 17 and 18 results in an aryl coupling process that produces the dicationic, biphenyl-bridged platinum dimers [[(Ph(2)SiP(2))Pt](2)(mu-eta(3):eta(3)-biphenyl)][B(C(6)F(5))(4)](2) (19) and [[(dppp)Pt](2)(mu-eta(3):eta(3)-biphenyl)][B(C(6)F(5))(4)](2) (20). Extended thermolysis of neutral [Ph(2)BP(2)]Pt(Ph)(THF) (16) results primarily in a disproportionation into the complex molecular salt [[Ph(2)BP(2)]PtPh(2)](-)[[Ph(2)BP(2)]Pt(THF)(2)](+). The bulky phosphine adducts [Ph(2)BP(2)]Pt(Me)[P(C(6)F(5))(3)] (25) and [(Ph(2)SiP(2))Pt(Me)[P(C(6)F(5))(3)]][B(C(6)F(5))(4)] (29) also undergo thermolysis in benzene to produce their respective phenyl complexes, but at a much slower rate than for 13-15. Inspection of the methane byproducts from thermolysis of 13, 14, 15, 25, and 29 in benzene-d(6) shows only CH(4) and CH(3)D. Whereas CH(3)D is the dominant byproduct for 14, 15, 25, and 29, CH(4) is the dominant byproduct for 13. Solution NMR data obtained for 13, its (13)C-labeled derivative [Ph(2)BP(2)]Pt((13)CH(3))(THF) (13-(13)()CH(3)()), and its deuterium-labeled derivative [Ph(2)B(CH(2)P(C(6)D(5))(2))(2)]Pt(Me)(THF) (13-d(20)()), establish that reversible [Ph(2)BP(2)]-metalation processes are operative in benzene solution. Comparison of the rate of first-order decay of 13 versus the decay of d(20)-labeled 13-d(20)() in benzene-d(6) affords k(13)()/k(13-d20)() approximately 3. The NMR data obtained for 13, 13-(13)()CH(3)(), and 13-d(20)() suggest that ligand metalation processes involve both the diphenylborate and the arylphosphine positions of the [Ph(2)BP(2)] auxiliary. The former type leads to a moderately stable and spectroscopically detectable platinum(IV) intermediate. All of these data provide a mechanistic outline of the benzene solution chemistries for the zwitterionic and the cationic systems that highlights their key similarities and differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号