首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dynamic fracture behavior of syntactic foams made of thin-walled microballoons dispersed in epoxy matrix is studied. Monotonically decreasing dynamic Young's modulus with increasing volume fraction of microballoons is observed using ultrasonic pulse-echo and density measurements. The results are also in good agreement with the Hashin–Shtrikman lower-bound predictions for elastic porous solids. Dynamic crack initiation toughness and crack growth behaviors are examined using instrumented drop-tower tests and optical measurements. Crack initiation toughness shows a linear relationship with Young's modulus over the entire range of volume fraction of microballoons studied. A proposed model based on simple extension of micromechanics prediction agrees well with the measurements. The optical method of coherent gradient sensing (CGS) has been used along with high-speed photography to record crack tip deformation histories in syntactic foam samples subjected to impact loading. Pre- and post-crack initiation events have been successfully captured and apparent dynamic stress intensity factor histories are extracted from the interferograms. Results suggest increasing crack speeds with volume fraction of microballoons. No significant dependence of dynamic fracture toughness on crack speed in any of the volume fractions is observed.  相似文献   

2.
The electro-optic holographic technique has already been used to determine Young's dynamic modulus in homogeneous materials based on the resonance frequency of the analysed samples. This paper shows a modification of the determination method of this frequency that speeds up this process thus obtaining Young's modulus. Based on the visualisation of real time fringes drawn by exciting the rods at the 1000–10,000 Hz range, the proposed method allows us to determine their resonance frequencies.

This procedure has been used in the analysis of non-homogeneous materials such as mortar and concrete. The results obtained by this method show good correlation with those determined by the conventional compression method established by Una Norma Española (UNE) regulations, but with a smaller variability as far as measurements are concerned. The variation coefficient is less than 1% with the optical method as opposed to 3% with the compression technique.  相似文献   


3.
Atomic force acoustic microscopy is a near-field technique which combines the ability of ultrasonics to image elastic properties with the high lateral resolution of scanning probe microscopes. We present a technique to measure the contact stiffness and the Young's modulus of sample surfaces quantitatively, with a resolution of approximately 20 nm, exploiting the contact resonance frequencies of standard cantilevers used in atomic force microscopy. The Young's modulus of nanocrystalline ferrite films has been measured as a function of oxidation temperature. Furthermore, images showing the domain structure of piezoelectric lead zirconate titanate ceramics have been taken.  相似文献   

4.
A method is presented to determine the bulk elastic properties of isotropic elastic closed-cell foams from impedance tube sound absorption tests. For such foams, a resonant sound absorption is generally observed, where acoustic energy is transformed into mechanical vibration, which in turn is dissipated into heat due to structural damping. This article shows how the bulk Young's modulus, Poisson's ratio, and damping loss factor can be deduced from the resonant absorption. Also, an optimal damping loss factor yielding 100% of absorption at the first resonance is defined from the developed theory. The method is introduced for a sliding edge condition which is an ideal condition. Then, the method is extended to a bonded edge condition which is more easily achievable and additionally enables the identification of the Poisson's ratio. The method is experimentally tested on expanding closed-cell foams to find their elastic properties in both cases. Using the found properties, sound absorption predictions using an equivalent solid model with and without surface absorption are compared to measurements. Good correlations are obtained when considering surface absorption.  相似文献   

5.
根据流体中圆柱固体对超声波的背向散射谱与固体弹性参数的密切关系,本提出了材料弹性参数测量的一种新方法-超声背向散射谱法;测量了铜合金杆和铝合金杆的超声背向散射谱,并反演得到了它们的杨氏模量和泊松比。和传统的静力学方法相比,超声背向散射法测得的数据较精确,且对被测材料不会造成任何损伤。  相似文献   

6.
A simple uniaxial oedometric system is developed to test the elastic modulus of granular materials.The stressstrain relationship is first measured under conditions of uniaxial compression with additional lateral stress and strain,then the elastic modulus of the material is determined by the linear fitting method.It is found that the modulus is positively correlated to the grain size and negatively correlated to the container size.Arching and dragging are revealed to be the mechanism of such correlations by using the digital image correlation method and the pressure film technology based on the statistical method.  相似文献   

7.
袁剑辉  袁晓博 《物理学报》2008,57(6):3666-3673
用分子动力学方法研究了端口接枝不同数量羟基对扶手椅型和锯齿型单壁碳纳米管弹性模量的影响.结果表明,未接枝的扶手椅型(5, 5),(10,10)管和锯齿型(9, 0),(18, 0)管杨氏模量分别为948,901和804,860GPa.在接枝2—8个羟基情况下,锯齿型单壁碳纳米管拉伸杨氏模量基本不随接枝数量增加发生变化,而扶手椅单壁碳纳米管则不同,接枝状态下的弹性模量比未接枝状态小很多,但接枝一定数量后,其杨氏模量又略增到某一稳定值.分别从接枝后碳纳米管变形电子密度等值线结构、C—C键长和系统结合能变化规律等方面,对单壁碳纳米管弹性模量的接枝效应进行了分析. 关键词: 碳纳米管 羟基 接枝效应 杨氏模量  相似文献   

8.
By using a linear scaling self-consistent charge, density functional tight-binding (SCC-DFTB) method and an ab intio Dmol3 calculation, the energy and Young's modulus as a function of tube length for (10, 0) single-walled carbon nanotubes (SWCNTs) are investigated. It was found that with increasing the length of SWCNTs the Young's modulus increases rapidly, then, there is a slow increase, which ultimately approaches a constant value after the length is increased to ~20 nm, whereas a reversed variation tendency was found for the average energy of atoms in SWCNTs with a change of the tube length. We found that the characters of the length-dependent energy and Young's modulus stem from the changed Py-DOS of atoms in the ending region of the tube. Here one simple formula is proposed for quantitatively explaining the length-dependent energy and modulus.  相似文献   

9.
The dynamic mechanical properties of quartz have been studied as a function of temperature across the α-β phase transition and in the vicinity of the incommensurate (IC) phase on cooling from the β phase. The mechanical response of the IC phase shows strong anelasticity for measurement of Young's modulus (closely related to C(11) in our geometry) with modulated stress driven at 1 Hz. The dynamic shear modulus does not show similar strong effects in its imaginary component, although a very weak anomaly is barely detectable in the real part of the modulus. Our results indicate that the incommensurate microstructures within the quartz transition interval are susceptible to dilatational stress with relaxation times around 1 s.  相似文献   

10.
This paper have performed molecular static calculations with the quantum corrected Sutten Chen type many body potential to study size effects on the elastic modulus of Au nanowires with [100], [110] and [111] crystallographic directions, and to explore the preferential growth orientation of Au nanowires. The main focus of this work is the size effects on their surface characteristics. Using the common neighbour analysis, this paper deduces that surface region approximately consists of two layer atoms. Further, it extracts the elastic modulus of surface, and calculate surface energy of nanowire. The results show that for all three directions the Young's modulus of nanowire increases as the diameter increases. Similar trend has been observed for the Young's modulus of surface. However, the atomic average potential energy of nanowire shows an opposite change. Both the potential and surface energy of [110] nanowire are the lowest among all three orlentational nanowires, which helps to explain why Au nanowires possess a [110] preferred orientation during the experimental growth proceeds.  相似文献   

11.
In this paper a method is proposed to characterize the elasticity of isotropic linear materials from the generation and detection of an acoustic surface wave. For the calculation of the elastic constants, it is sufficient that only one of the faces of the sample be accessible. The methodology is based on both the measurement of the Rayleigh wave velocity and on the determination of the normal to longitudinal amplitude ratio calculated from the normal and longitudinal components of the displacement of a point. The detection of two consecutive surface wave pulses using a single experimental setup permits the determination of the elastic constants. The method is applied to calculate Young's modulus and Poisson's ratio of an aluminum sample as well as their systematic uncertainties. The results obtained give a relative uncertainty for Young's modulus on the order of the sixth part of that calculated for Poisson's ratio.  相似文献   

12.
高密度聚乙烯(HDPE)在静高压下的强度研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 高密度聚乙烯(HDPE)在1~2 GPa的静高压下发生熔体结晶。用压缩的方法对经过高压处理后的样品进行了杨氏模量的测量。测量结果表明:样品的杨氏模量随压力和结晶度的增加而增大,最大值达到1.46 GPa。伸直链晶体的形成是杨氏模量增加的重要因素。  相似文献   

13.
The polymerisation degree of thin polymer coatings was checked by following the variation of their local mechanical properties. Atomic force microscope (AFM) was used in an indentation mode to investigate the mechanical characteristics of silicone coatings on polycarbonate substrates. The evolution of Young's modulus of the silicone coatings was determined as a function of the polymer annealing time. We have used a relative method to measure Young's moduli, which involves a calibration step with a set of reference polymers. No variation was observed for the modulus of silicone coatings annealed during more than 40 min at 130 °C. This result indicates that over-heating does not modify the mechanical properties of the coating.  相似文献   

14.
A non-destructive laser-generated ultrasonic inspection system has been developed to evaluate the elastic properties of ceramic fibres. The approach uses a pulsed Nd:YAG laser to excite ultrasonic signals in fibres. The signal is detected by a piezoelectric acoustic emission transducer to obtain the appropriate frequency response suitable for an elastically one-dimensional sample. By using a differential time-of-flight system, a very accurate measure of the velocity can be obtained in the fibre, with a total scatter of less than 0.5%. This approach has been used to investigate the Young's modulus of polycrystalline carbon and boron fibres as a function of stress. Both types of fibres were found to have a Young's modulus increase as greater applied loads were imposed. The carbon and boron fibres, along with silicon carbide fibres, were evaluated at elevated temperatures up to 700 °C. The carbon fibres were found to have an immediate decrease in the Young's modulus as the temperature was increased, due to oxidation of the carbon. The Young's modulus of the boron fibres decreased only at temperatures higher than 200 °C, probably the result of a microstructural transformation or relaxation. The silicon carbide fibres were found to have no significant change in the elastic properties up to 700 °C. The ultrasonic technique was also applied to polycrystalline alumina fibres and fibre tows between ambient temperature and 1200 °C in a specially designed furnace. Using this technique, it was possible to distinguish the changes in the elasticity of the alumina fibres as they were processed into -alumina. The change in the Young's modulus was readily apparent during phase transformations to -alumina. In addition, the ultrasonic velocity can be used to infer information concerning any coatings that were applied to the alumina fibres. This can be used to aid in the quantification of the coating thickness and uniformity. The application of the ultrasonic inspection system has demonstrated the ability to determine rapidly and non-destructively the elastic properties in ceramic fibres. The information gained from the measurements can be used as a quality assurance technique, or can be modified to be a real-time process control/process monitoring system.  相似文献   

15.
We investigate experimentally the linear viscoelastic properties of a lamellar liquid foam as a function of the cell size and spatial organisation. The system consists of multilamellar vesicles generated by a simple shear flow on a lyotropic lamellar phase. The vesicles can be prepared either in an amorphous or a spatially ordered state. Their size is easily tunable in the range R = 0.5-15 μm. Whereas the shear modulus of the amorphous lamellar foam is alike that of usual liquid foams or concentrated emulsions and scales linearly with 1/R, the elastic modulus of the ordered foam is almost independent of the cell size. This result --probably the first describing the elasticity of an ordered foam-like system-- remains unexplained. Received 7 August 2000  相似文献   

16.
用静电激发调频检测法对比测量了纯镍试样电解充氢和人为部分应力松弛后在室温时效过程中杨氏模量随时间的变化。结果表明:在人为部分应力松弛后的时效过程中,杨氏模量逐渐升高,其稳态值比初始值升高0.87%;而在充氢后的时效过程中,氢不断地从试样中逸出,同时杨氏模量也不断地降低,其稳态值比充氢后的瞬时值低2.87%;即,氢原子能明显地增高纯镍的弹性模量。 关键词:  相似文献   

17.
Two independent systems to measure the dynamic complex Young's and bulk moduli of viscoelastic materials as a function of temperature and hydrostatic pressure are described. In the Young's modulus system, a bar-shaped sample is adhered to a piezoelectric shaker and mounted vertically inside an air-filled pressure vessel. Data are obtained using both the traditional resonant approach and a wave-speed technique. In the bulk modulus system, the compressibility of a sample of arbitrary shape immersed in Castor oil and placed inside a pressure chamber is measured. Data can be obtained at frequencies typically ranging from 50 Hz to 5 kHz, at temperatures comprised between −2 and 50 °C and under hydrostatic pressures ranging from 0 to 2 MPa (Young's), or 6.5 MPa (bulk). Typical data obtained with both systems are presented, and it is shown how these data can be combined to completely characterize the elasticity of the material under investigation. In particular, they can be used to obtain experimental values of the complex Poisson's ratio, whose accurate measurement is otherwise quite challenging to perform directly. As an example, the magnitude and loss tangent of Poisson's ratio are presented for a nearly incompressible rubber.  相似文献   

18.
张加宏  冒晓莉  刘清惓  顾芳  李敏  刘恒  葛益娴 《中国物理 B》2012,21(8):86101-086101
Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications. A numerical experimental method of determining resonant frequencies and Young's modulus of nanobeams by combining finite element analysis and frequency response tests based on an electrostatic excitation and visual detection by laser Doppler vibrometer is presented in this paper. Silicon nanobeams test structures are fabricated from silicon-on-insulator wafers by using a standard lithography and anisotropic wet etching release process, which inevitably generates the undercut of the nanobeam clamping. In conjunction with three-dimensional finite element numerical simulations incorporating the geometric undercut, dynamic resonance tests reveal that the undercut significantly reduces resonant frequencies of nanobeams due to the fact that it effectively increases the nanobeam length by a correct value Δ L, which is a key parameter that is correlated with deviations in the resonant frequencies predicted from the ideal Euler-Bernoulli beam theory and experimentally measured data. By using a least-square fit expression including Δ L, we finally extract Young's modulus from the measured resonance frequency versus effective length dependency and find that Young's modulus of silicon nanobeam with 200-nm thickness is close to that of bulk silicon. This result supports that the finite size effect due to surface effect does not play a role in mechanical elastic behaviour of silicon nanobeams with the thickness larger than 200 nm.  相似文献   

19.
A pulse-echo ultrasonic method is presented to measure elastic parameter variations during thermal loading with high accuracy. Using a dry coupling configuration dedicated to high temperature investigation, this technique has been applied on 6061-T6 aluminium samples up to 220 °C. Experimental settings are described to assess the measurement reproducibility estimated at a value of 0.2%. Consequently, the anisotropy of this aluminium between the rolling direction and two orthogonal axes has been clearly detected and also measured versus temperature. As regards the temperature dependence of these elastic parameters, these results are compared with the estimations of the Young’s modulus obtained during mechanical tests in conditions of low cycle fatigue (LCF). The same linear variation versus temperature is found but with a shift of 7 GPa. This difference has been classically attributed to systematic experimental error sources and to the distinction existing between dynamic and static elastic modulus.  相似文献   

20.
利用密度泛函理论研究了高温高压下Zr2AlC的结构和热力学性质,计算得到Zr2AlC的晶格参数与实验值符合较好.研究了Zr2AlC的弹性常数、体模量、剪切模量和杨氏模量等力学性质随压力变化的趋势.同时研究了维氏硬度随压力的变化趋势.通过计算得到的杨氏模量预测了Zr2AlC的弹性各向异性.最后,基于准简谐德拜模型,成功预测了Zr2AlC的德拜温度、热容、热膨胀系数和Grüneisen参数随着压强和温度的变化关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号