首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Today, the prevention and treatment of voice disorders is an ever-increasing health concern. Since many occupations rely on verbal communication, vocal health is necessary just to maintain one's livelihood. Commonly applied models to study vocal fold vibrations and air flow distributions are self sustained physical models of the larynx composed of artificial silicone vocal folds. Choosing appropriate mechanical parameters for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In the present work, a combination of experimental and numerical approaches to compute material parameters for synthetic vocal fold models is presented. The material parameters are derived from deformation behaviors of excised human larynges. The resulting deformations are used as reference displacements for a tracking functional to be optimized. Material optimization was applied to three-dimensional vocal fold models based on isotropic and transverse-isotropic material laws, considering both a layered model with homogeneous material properties on each layer and an inhomogeneous model. The best results exhibited a transversal-isotropic inhomogeneous (i.e., not producible) model. For the homogeneous model (three layers), the transversal-isotropic material parameters were also computed for each layer yielding deformations similar to the measured human vocal fold deformations.  相似文献   

2.
The relation between subglottal pressure (Ps) and fundamental frequency (F0) in phonation was investigated with an in vivo canine model. Direct muscle stimulation was used in addition to brain stimulation. This allowed the Ps-F0 slope to be quantified in terms of cricothyroid muscle activity. Results showed that, for ranges of 0-2 mA constant current stimulation of the cricothyroid muscle, the Ps-F0 slope ranged from 10 Hz/kPa to 60 Hz/kPa. These results were compared to similar slopes obtained in a previous study on excised larynges in which the vocal fold length was varied instead of cricothyroid activation. A physical interpretation of the Ps-F0 slope is that the amplitude-to-length ratio of the vocal folds decreases with CT activity, resulting in a smaller time-varying stiffness. In other words, there is less dependence of F0 on amplitude of vibration when the vocal folds are long instead of short.  相似文献   

3.
A theoretical flow solution is presented for predicting the pressure distribution along the vocal fold walls arising from asymmetric flow that forms during the closing phases of speech. The resultant wall jet was analyzed using boundary layer methods in a non-inertial reference frame attached to the moving wall. A solution for the near-wall velocity profiles on the flow wall was developed based on a Falkner-Skan similarity solution and it was demonstrated that the pressure distribution along the flow wall is imposed by the velocity in the inviscid core of the wall jet. The method was validated with experimental velocity data from 7.5 times life-size vocal fold models, acquired for varying flow rates and glottal divergence angles. The solution for the asymmetric pressures was incorporated into a widely used two-mass model of vocal fold oscillation with a coupled acoustical model of sound propagation. Asymmetric pressure loading was found to facilitate glottal closure, which yielded only slightly higher values of maximum flow declination rate and radiated sound, and a small decrease in the slope of the spectral tilt. While the impact on symmetrically tensioned vocal folds was small, results indicate the effect becomes more significant for asymmetrically tensioned vocal folds.  相似文献   

4.
Adjustments to cricothyroid and thyroarytenoid muscle activation are critical to the control of fundamental frequency and aerodynamic aspects of vocal fold vibration in humans. The aerodynamic and physical effects of these muscles are not well understood and are difficult to study in vivo. Knowledge of the contributions of these two muscles is essential to understanding both normal and disordered voice physiology. In this study, a three-mass model for voice simulation in adult males was used to produce systematic changes to cricothyroid and thyroarytenoid muscle activation levels. Predicted effects on fundamental frequency, aerodynamic quantities, and physical quantities of vocal fold vibration were assessed. Certain combinations of these muscle activations resulted in aerodynamic and physical characteristics of vibration that might increase the mechanical stress placed on the vocal fold tissue.  相似文献   

5.
Recent experimental studies showed that isotropic vocal fold models were often blown wide apart and thus not able to maintain adductory position, resulting in voice production with noticeable breathy quality. This study showed that the capability of the vocal fold to resist deformation against airflow and maintain adductory position can be improved by stiffening the body-layer stiffness or increasing the anterior-posterior tension of the vocal folds, which presumably can be achieved through the contraction of the thyroarytenoid (TA) and cricothyroid (CT) muscles, respectively. Experiments in both physical models and excised larynges showed that, when these restraining mechanisms were activated, the vocal folds were better able to maintain effective adduction, resulting in voice production with much clearer quality and reduced breathiness. In humans, one or more restraining mechanisms may be activated at different levels to accommodate the varying degree of restraining required under different voice conditions.  相似文献   

6.
A simple, one degree of freedom virtual trajectory model of vocal fold kinematics was developed to investigate whether kinematic features of vocal fold movement confirm increased muscle stiffness. Model simulations verified that increases in stiffness were associated with changes in kinematic parameters, suggesting that increases in gesture rate would affect kinematic features to a lesser degree in vocal hyperfunction patients given the increased levels of muscle tension they typically employ to phonate. This hypothesis was tested experimentally in individuals with muscle tension dysphonia (MTD; N = 10) and vocal nodules (N = 10) relative to controls with healthy normal voice (N = 10) who were examined with trans-nasal endoscopy during a simple vocal fold abductory-adductory task. Kinematic measures in MTD patients were less affected by increased gesture rate, consistent with the hypothesis that these individuals have elevated typical laryngeal muscle tension. Group comparisons of the difference between medium and fast gesture rates (Mann-Whitney, one-tailed) showed statistically significant differences between the control and MTD individuals on the two kinematic features examined (p<0.05). Results in nodules participants were mixed and are discussed independently. The findings support the potential use of vocal fold kinematics as an objective clinical assay of vocal hyperfunction.  相似文献   

7.
A model-based approach is proposed to objectively measure and classify vocal fold vibrations by left-right asymmetries along the anterior-posterior direction, especially in the case of nonstationary phonation. For this purpose, vocal fold dynamics are recorded in real time with a digital high-speed camera during phonation of sustained vowels as well as pitch raises. The dynamics of a multimass model with time-dependent parameters are matched to vocal fold vibrations extracted at dorsal, medial, and ventral positions by an automatic optimization procedure. The block-based optimization accounts for nonstationary vibrations and compares the vocal fold and model dynamics by wavelet coefficients. The optimization is verified with synthetically generated data sets and is applied to 40 clinical high-speed recordings comprising normal and pathological voice subjects. The resulting model parameters allow an intuitive visual assessment of vocal fold instabilities within an asymmetry diagram and are applicable to an objective quantification of asymmetries.  相似文献   

8.
In physical modeling of phonation, the pressure drop along the glottal constriction is classically assessed with the glottal geometry and the subglottal pressure as known input parameters. Application of physical modeling to study phonation abnormalities and pathologies requires input parameters related to in vivo measurable quantities commonly corresponding to the physical model output parameters. Therefore, the current research presents the inversion of some popular simplified flow models in order to estimate the subglottal pressure, the glottal constriction area, or the separation coefficient inherent to the simplified flow modeling for steady and unsteady flow conditions. The inverse models are firstly validated against direct simulations and secondly against in vitro measurements performed for different configurations of rigid vocal fold replicas mounted in a suitable experimental setup. The influence of the pressure corrections related to viscosity and flow unsteadiness on the flow modeling is quantified. The inversion of one-dimensional glottal flow models including the major viscous effects can predict the main flow quantities with respect to the in vitro measurements. However, the inverse model accuracy is strongly dependent on the pertinence of the direct flow modeling. The choice of the separation coefficient is preponderant to obtain pressure predictions relevant to the experimental data.  相似文献   

9.
The relation between subglottal pressure (Ps) and fundamental frequency (F0) in phonation was investigated with an in vivo canine model. Direct muscle stimulation was used in addition to brain stimulation. This allowed the Ps-F0 slope to be quantified in terms of cricothyroid muscle activity. Results showed that, for ranges of 0–2 mA constant current stimulation of the cricothyroid muscle, the Ps-F0 slope ranged from 10 Hz/kPa to 60 Hz/kPa. These results were compared to similar slopes obtained in a previous study on excised larynges in which the vocal fold length was varied instead of cricothyroid activation. A physical interpretation of the Ps-F0 slope is that the amplitude-to-length ratio of the vocal folds decreases with CT activity, resulting in a smaller time-varying stiffness. In other words, there is less dependence of F0 on amplitude of vibration when the vocal folds are long instead of short.  相似文献   

10.
EGGW is a phonatory parameter that can be derived from electroglottographic (EGG) signals and used to infer the relative degree of vocal fold contact. Vocal fold models predict that men will exhibit medial bulging of their vocal folds during phonation but women will not. These models lead us to expect gender differences in the magnitude of EGGW. Nevertheless, significant gender differences in EGGW for adults with normal voices have not been documented in previous studies when EGGW was computed from criterion lines placed at 25%-40% of the amplitude of the uninverted EGG wave form. We hypothesized that EGGW would better reflect gender differences in vocal fold adductory patterns if EGGW was computed from portions of the wave form that were associated with more vocal fold contact. EGGW was measured for seven men and seven women with normal voices. When EGGW was computed from segments of the wave form that were associated with relatively greater vocal fold contact (i.e., using criterion levels of > or = 55%), findings were consistent with the gender-specific adductory patterns that have been proposed from vocal fold models. Guidelines for appropriate placement of criterion lines when computing EGGW are discussed.  相似文献   

11.
12.
Elastic models of vocal fold tissues   总被引:4,自引:0,他引:4  
Elastic properties of canine vocal fold tissue (muscle and mucosa) were obtained through a series of experiments conducted in vitro and were modeled mathematically. The elastic properties play a significant role in quantitative analysis of vocal fold vibrations and theory of pitch control. Samples of vocalis muscle and mucosa were dissected and prepared from dog larynges a few minutes premortem and kept in a Krebs solution at a temperature of 37 +/- 1 degrees C and a pH of 7.4 +/- 0.05. Samples of muscle tissue and mucosa were stretched and released in a slow, sinusoidal fashion. Force and displacement of the samples were measured with a dual-servo system (ergometer). After digitization, stress-strain data for samples of muscle tissue and cover tissue were averaged. The stress-strain data were then fitted numerically by polynomial and exponential models.  相似文献   

13.
Simplified models have been used to simulate and study the flow-induced vibrations of the human vocal folds. While it is clear that the models' responses are sensitive to geometry, it is not clear how and to what extent specific geometric features influence model motion. In this study geometric features that played significant roles in governing the motion of a two-layer (body-cover), two-dimensional, finite element vocal fold model were identified. The model was defined using a flow solver based on the viscous, unsteady, Navier-Stokes equations and a solid solver that allowed for large strain and deformation. A screening-type design-of-experiments approach was used to identify the relative importance of 13 geometric parameters. Five output measures were analyzed to assess the magnitude of each geometric parameter's effect on the model's motion. The measures related to frequency, glottal width, flow rate, intraglottal angle, and intraglottal phase delay. The most significant geometric parameters were those associated with the cover--primarily the pre-phonatory intraglottal angle--as well as the body inferior angle. Some models exhibited evidence of improved model motion, including mucosal wave-like motion and alternating convergent-divergent glottal profiles, although further improvements are still needed to more closely mimic human vocal fold motion.  相似文献   

14.
SUMMARY: The purpose of this investigation was to investigate physical mechanisms of vocal fold vibration during normal phonation through quantification of the medial surface dynamics of the fold. An excised hemilarynx setup was used. The dynamics of 30 microsutures mounted on the medial surface of a human vocal fold were analyzed across 18 phonatory conditions. The vibrations were recorded with a digital high-speed camera at a frequency of 4,000 Hz. The positions of the sutures were extracted and converted to three-dimensional coordinates using a linear approximation technique. The data were reduced to principal eigenfuctions, which captured over 90% of the variance of the data, and suggested mechanisms of sustained vocal fold oscillation. The vibrations were imaged as the following phonatory conditions were manipulated: glottal airflow, an adductory force applied to the muscular process, and an elongation force applied to the thyroid cartilage. Over the range of variables studied, only the variation in glottal airflow yielded significant changes in subglottal pressure and fundamental frequency. All recordings showed high correlation for the distribution of the dynamics across the medial surface of the vocal fold. The distribution of the different displacement directions and velocities showed the highest variations around the superior region of the medial surface. Although the computed vibration patterns of the two largest empirical eigenfunctions were consistent with previous experimental observations, the relative prominence of the two eigenfunctions changed as a function of glottal airflow, impacting theories of vocal efficiency and vocal economy.  相似文献   

15.
Synchronized videostroboscopy and electroglottography were applied to the measurement of anterior-to-posterior open glottal length in four groups of patients; two with no clinically significant voice disorder, one with vocal fold polyps, and one with vocal fold nodules. The data showed that the groups did not differ significantly when open glottal length was measured at the time of minimum glottal opening. The pathological groups had significantly lower open glottal length measurements, however, when measurements were obtained at the time that vocal fold contact was initiated during the glottal cycle. The findings are preliminary evidence that vocal fold neoplasms may not have the effect of reducing glottal closure, as previously suggested in the literature. The data also highlight the importance of examining differential effects of vocal fold neoplasms at various points throughout the glottal cycle.  相似文献   

16.
Characterization of chronic vocal fold scarring in a rabbit model   总被引:2,自引:0,他引:2  
The purpose of the current study was to assess the histologic and rheologic properties of the scarred vocal fold lamina propria during a chronic phase of wound repair in a rabbit model. Eighteen rabbit larynges were scarred using a procedure that involved stripping the vocal fold lamina propria down to the thyroarytenoid muscle, using 3-mm microforceps. The approximate dimension of injury to the vocal fold was 3 x 1.5 x 0.5 mm [length x width x depth]. At 6 months postoperatively, histologic analysis of the scarred and control lamina propria in eight of these rabbits was completed for collagen, procollagen, elastin, and hyaluronic acid. Compared with control samples, scarred tissue samples revealed fragmented and disorganized elastin fibers. Additionally, collagen was significantly increased, organized, and formed thick bundles in the scarred vocal fold lamina propria. Measurements of the viscoelastic shear properties of the scarred and control lamina propria in the remaining 10 rabbits revealed increased elastic shear modulus (G') in 8 of 10 scarred samples and increased dynamic viscosity (eta') in 9 of 10 scarred samples. Although rheologic differences were not statistically significant, they revealed that on average, scarred samples were stiffer and more viscous than the normal controls. Histologic data are interpreted as indicating that by 6 months postinjury, the scarred rabbit vocal fold has reached a mature phase of wound repair, characterized by an increased, organized, and thick bundle collagen matrix. Rheologic data are interpreted as providing support for the potential role of increased, thick bundle collagen, and a disorganized elastin network on shear stiffness and dynamic viscosity in the chronic vocal fold scar. Based on these results, a 6-month postoperative time frame is proposed for future studies of chronic vocal fold scarring using the rabbit animal model.  相似文献   

17.
高速摄影成像分析声带振动发声的前后不对称性   总被引:1,自引:0,他引:1       下载免费PDF全文
张宇  杨帅  黄楠木  李琳 《声学学报》2017,42(3):341-347
高速摄影成像直接观察到声带振动的前后不对称性。将11个离体狗喉声带进行发声实验,设置3组声门下压分别为10 cm H2O,20 cm H2O和30 cm H2O,利用高速摄像仪和传声器,分别记录不同声门下压的声带振动图像和声信号.对高速摄影成像与同步采集的声信号基频进行定量分析和比较,基频均随声门下压的增大而增加。此外,对两种测量方法得到的基频进行相关分析比较,得到在同一声门下压下两种方法的基频相关系数均大于0.9,表明高速摄影成像得到的基频与声信号的基频具有高度相关性。高速摄影成像能直观地测量声带振动行为,对研究声带振动发声机理提供了有价值的测量手段。高速摄影获得的声带线性结构上25%,50%,75%位置处的振动幅度,显示了声带前后振动不对称且声门下压较低时振动不对称较明显。   相似文献   

18.
Geometry of the human vocal folds strongly influences their oscillatory motion. While the effect of intraglottal geometry on phonation has been widely investigated, the study of the geometry of the inferior surface of the vocal folds has been limited. In this study the way in which the inferior vocal fold surface angle affects vocal fold vibration was explored using a two-dimensional, self-oscillating finite element vocal fold model. The geometry was parameterized to create models with five different inferior surface angles. Four of the five models exhibited self-sustained oscillations. Comparisons of model motion showed increased vertical displacement and decreased glottal width amplitude with decreasing inferior surface angle. In addition, glottal width and air flow rate waveforms changed as the inferior surface angle was varied. Structural, rather than aerodynamic, effects are shown to be the cause of the changes in model response as the inferior surface angle was varied. Supporting data including glottal pressure distribution, average intraglottal pressure, energy transfer, and flow separation point locations are discussed, and suggestions for future research are given.  相似文献   

19.
Voice quality in patients with vocal fold paralysis can be affected by several factors, such as the position of the paralyzed vocal fold, its degree of atrophy, the configuration of its free edge, and the level differences between both vocal folds. Depending on the related vocal deficiency the patient will attempt to compensate using different maneuvers, such as increment of vocal tract and neck muscle contraction to improve glottal closure. This is probably one of the reasons why ventricular folds are frequently requested. The objective of this study is to analyze the behavior of the homolateral and contralateral vestibular folds to delineate patterns of vestibular motion during sustained phonation, in cases of unilateral vocal fold paralysis.  相似文献   

20.
A canine model was used to study effects of long-term intubation on vocal fold mucosa. Dogs' larynges were removed 5 weeks after a 7-day intubation period and were compared with control tissue. Intubation effects on vocal fold mucosa were highly variable. Most severe damage was observed posteriorly, at the presumed location of direct tube-mucosa contact. Effects judged to be less severe but still significant were noted in tissue anterior to this site. Morphometric analysis of the layers of the intubated mucosa revealed significant differences in epithelium, connective tissue, and glands, as compared with control tissue. Differences were also observed for blood vessels and nerves. Of particular clinical importance was evidence of damage along membranous, as well as cartilaginous, portions of the true vocal fold, and of damaged connective tissue and cartilage underlying epithelium which appeared normal. Implications of the findings for recovery from intubation, and for voice, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号