首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 836 毫秒
1.
The effect of intrinsic defects and isoelectronic substitutional impurities on the electronic structure of boron-nitride (BN) nanotubes is investigated using a linearized augmented cylindrical wave method and the local density functional and muffin-tin approximations for the electron potential. In this method, the electronic spectrum of a system is governed by a free movement of electrons in the interatomic space between cylindrical barriers and by a scattering of electrons from the atomic centers. Nanotubes with extended defects of substitution NB of a boron atom by a nitrogen atom and, vice versa, nitrogen by boron BN with one defect per one, two, and three unit cells are considered. It is shown that the presence of such defects significantly affects the band structure of the BN nanotubes. A defect band π(B, N) is formed in the optical gap, which reduces the width of the gap. The presence of impurities also affects the valence band: the widths of s, sp, and pπ bands change and the gap between s and sp bands is partially filled. A partial substitution of the N by P atoms leads to a decrease in the energy gap, to a separation of the Ds(P) band from the high-energy region of the s(B, N) band, as well as to the formation of the impurity (P) and *(P) bands, which form the valence-band top and conduction-band bottom in the doped system. The influence of partial substitution of N atoms by the As atom on the electronic structure of BN nanotubes is qualitatively similar to the case of phosphorus, but the optical gap becomes smaller. The optical gap of the BN tubule is virtually closed due to the effect of one Sb atom impurity per translational unit cell, in contrast to the weak indium-induced perturbation of the band structure of the BN nanotube. Introduction of the one In, Ga or Al atom per three unit cells of the (5, 5) BN nanotube results in 0.6 eV increase of the optical gap. The above effects can be detected by optical and photoelectron spectroscopy methods, as well as by measuring electrical properties of the pure and doped BN nanotubes. They can be used to design electronic devices based on BN nanotubes.  相似文献   

2.
魏艳佩  贾甜甜  陈刚 《中国物理 B》2017,26(2):28103-028103
According to band folding analyses, the graphene superlattices can be differed by whether the Dirac points are folded to Γ point or not. In previous studies, the inversion symmetry preserved defects open bandgap in the former superlattices while they cannot in the latter ones. In this paper, by using density functional theory with generalized gradient approximation, we have carefully studied the electronic properties of the latter graphene superlattices, in which the defects would induce π-band splitting to get the π_a1–π_a2 and π_z1–π_z2 band sets. Based on our detailed studies, such splitting could be attributed to the geometrically induced bond-symmetry breaking. In addition, these band sets could be shifted toward each other by the methodology of strain engineering. A bandgap would be opened once the band sets start to overlap. Then,its gap width could be continuously enlarged by enhancing strain until reaching the maximum value determined by the defect density. These studies contribute to the bandstructure engineering of graphene-based nanomaterials, which would be interesting to call for further investigations on both theory and experiment.  相似文献   

3.
The interaction and coupling between the electrical, mechanical properties and formation energy for SW defective (10,0) carbon nanotube is studied in density functional theory. The investigated configurations include the axial and circumferential orientations for single defect as well as four distribution types for double ones. The more stable defective configurations, namely, SW-I configurations for single SW defective carbon nanotube and II–II-(2) and I–I ones for double SW defective tubes are related to high symmetry distribution of the defects. Moreover, we found that the σ?–π* hybridization induced by curvature effect causes the semiconductor to metal transition for double axial SW defects case. Young's modulus reduction of SW defective carbon nanotube with respect to defect-free one is less than 8%. The energy bands and Young's moduli of double SW defective tubes are mostly affected by the defect distribution and concentration but insensitive to the circumferential distance between the double defects.  相似文献   

4.
In the light of φ-mapping method and topological current theory, the stability of disclinations around a spherical particle in nematic liquid crystals is studied. We consider two different defect structures around a spherical particle: disclination ring and point defect at the north or south pole of the particle. We calculate the free energy of these different defects in the elastic theory. It is pointed out that the total Frank free energy density can be divided into two parts. One is the distorted energy density of director field around the disclinations. The other is the free energy density of disclinations themselves, which is shown to be concentrated at the defect and to be topologically quantized in the unit of (k-k24)π/2. It is shown that in the presence of saddle-splay elasticity a dipole (radial and hyperbolic hedgehog) configuration that accompanies a particle with strong homeotropic anchoring takes the structure of a small disclination ring, not a point defect.  相似文献   

5.
It is shown that the Bragg glass phase can become unstable with respect to planar crystal defects as twin or grain boundaries. A single defect plane that is oriented parallel to the magnetic field as well as to one of the main axis of the Abrikosov flux line lattice is always relevant, whereas we argue that a plane with higher Miller index is irrelevant, even at large defect potentials. A finite density of parallel defects with random separations can be relevant even for larger Miller indices. Defects that are aligned with the applied field restore locally the flux density oscillations which decay algebraically with distance from the defect. The current-voltage relation is changed to lnV(J) approximately -J(-1). The theory exhibits striking similarities to the physics of Luttinger liquids with impurities.  相似文献   

6.
The “supercell” scheme is applied to the study of local defects in MgO (Ca substitution, cation and anion vacancies) and bulk silicon (carbon substitution). The trend of the quantities of interest (defect formation energy, geometrical relaxation, charge distribution around the defect) as a function of the supercell size is explored; when neutral defects are considered, supercells containing 50 to 100 atoms are large enough to allow for most of the nuclear and electronic relaxation and to produce a negligible interaction between defects in different cells. These conclusions apply both to ionic and covalent host crystals. Present day ab initio quantum mechanical periodic computer programs can handle cells of such a size at a relatively low cost and high numerical accuracy.

When charged defects are considered (vacancies in MgO), the supercell scheme must be modified in order to avoid Coulomb divergencies, but the usually adopted correction, which consists in introducing a compensating uniform background of charge, generates spurious higher order electrostatic interactions, which are far from being negligible. The resulting defect formation energies show very slow, if any, convergence trends and “a posteriori” semiclassical corrections proposed in the literature do not represent a general solution to the problem. On the other hand, other properties, such as atom relaxation and charge distribution, show a much faster convergence than energy with respect to the cell size.  相似文献   

7.
ABSTRACT

Single-wall carbon nanotubes (CNTs) have been suggested as potential materials for use in next-generation gas sensors. The sidewall functionalisation of CNTs facilitates gas molecule adsorption. In this study, density functional theory (DFT)-based ab initio molecular dynamics simulations are performed for a periodic zigzag single-wall (4,0) CNT surrounded by a monolayer of hydrogen peroxide molecules in an attempt to find conditions that favour sidewall functionalisation. The dependency of dynamics on charge states of the system is examined. It is found negative charges favour reactions that result in the functionalisation of the CNT. First principles molecular dynamics of defect formation yields chemically reasonable structure of stable defects, which can be reproduced in CNTs of any diameter and chirality. The explored hydroxyl and hydroperoxyl defects increase conductivity in a large diameter (10,0) CNT, while decrease conductivities in a small diameter (4,0) CNT.  相似文献   

8.
The formation energies and transition energy levels of intrinsic defects in hexagonal BN (h-BN) bilayer and monolayer have been studied by first-principles calculations based on density functional theory. Our calculated results predict that excellent intrinsic p-type and n-type conductivities are very difficult to be realized in h-BN bilayer and monolayer. This is because of the high formation energies of acceptor-like defects (≥4.6 eV ) and the rather deep transition energy levels of donor-like defects (≥2.0 eV ). In order to obtain h-BN layers with more efficient p-type and n-type conductivity, extrinsic doping using foreign impurities is necessary.  相似文献   

9.
李威  冯妍卉  陈阳  张欣欣 《物理学报》2012,61(13):136102-136102
在碳纳米管的制备过程中, 各种点缺陷不可避免地存在于其晶格结构中, 对于碳管的热输运性质造成不可忽视的影响. 使用非平衡分子动力学方法, 选用反应经验键序势能, 模拟计算含有缺陷的碳纳米管的热导率. 尝试采用正交试验方法设计算例, 不但减少了计算量, 并且利于分析缺陷类型、 管长和管径三种结构因素对缺陷造成的热导率下降影响的主次和趋势. 重点研究了掺杂、 吸附和空位三类点缺陷的影响, 与无缺陷完整碳纳米管进行比较, 开展缺陷效应分析, 并进一步考察了环境温度等因素的影响. 模拟结果表明, 相对完整无缺陷碳管, 含有点缺陷的碳管热导率显着下降; 在有缺陷存在的情况下, 缺陷的类型对碳管热导率的影响最大, 管径次之, 管长影响相对最小; 缺陷类型对热导率影响力从大到小依次为: 空位 > 掺杂 > 吸附; 不同环境温度下, 点缺陷对碳管热导率的影响不尽相同.  相似文献   

10.
We investigate the thermal transport properties of armchair graphene nanoribbons (AGNRs) possessing various sizes of triangular vacancy defect within a temperature range of 200–600 K by using classical molecular dynamics simulation. The results show that the thermal conductivities of the graphene nanoribbons decrease with increasing sizes of triangular vacancy defects in both directions across the whole temperature range tested, and the presence of the defect can decrease the thermal conductivity by more than 40% as the number of removed cluster atoms is increased to 25 (1.56% for vacancy concentration) owing to the effect of phonon–defect scattering. In the meantime, we find the thermal conductivity of defective graphene nanoribbons is insensitive to the temperature change at higher vacancy concentrations. Furthermore, the dependence of temperatures and various sizes of triangular vacancy defect for the thermal rectification ration are also detected. This work implies a possible route to achieve thermal rectifier for 2D materials by defect engineering.  相似文献   

11.
A new automated inspection algorithm is proposed for detecting critical defects based on adaptive multi-level defect detection and probability density function in thin film transistor liquid crystal display (TFT-LCD) images containing a background region’s non-uniform and random noises. To improve the detecting capability for a critical-defect-detecting algorithm, the background region’s non-uniformity is eliminated using statistical values such as the mean and standard deviation of a test image. For the defect detection, the candidate defects are collected on each detection level and used to find a probability density function based on Parzen-window technique. Through simulation it was verified that the proposed method has superior capability for detecting critical defects which results in smaller brightness difference between a defect and its neighbors.  相似文献   

12.
The influence of vacancy defects and nitrogen doping on the thermal conductivity of typical armchair (10, 10) single-walled carbon nanotubes is investigated using molecular dynamics (MD) simulation. The second-generation reactive empirical bond order potential and Tersoff potential are used to describe the interatomic interactions and the thermal conductivities are calculated using the Müller-Plathe approach (also called non-equilibrium MD simulation). Vacancy defects decrease the thermal conductivity whereas the substitution of nitrogen at vacancy sites improves the thermal conductivity. Quantum correction of the calculated results produces a thermal conductance temperature dependence that is in qualitative agreement with experimental data.  相似文献   

13.
Active (lock-in and pulsed) thermography technique is used to quantify defect features in specimens of glass fiber reinforced polymer, high density rubber, low density rubber and aluminum bonded low density rubber with artificially produced defects. The relationship between phase contrast and thermal contrast with defect features are examined. Using lock-in approach, the optimal frequencies for different specimens are determined experimentally. It is observed that with increasing defect depth, the phase contrast increases while the thermal contrast decreases. Defects with radius to depth ratio greater than 1.0 are found to be discernible. The phase difference between sound and defective region as a function of square root of excitation frequency for glass fiber reinforced polymer specimen is found to be in good agreement with the predictions of Bennet and Patty model [1]. Further, using pulsed thermography, the defects depth could be measured accurately for glass fiber reinforced polymer specimen from the thermal contrast using the analytical approach of Balageas et al. [2].  相似文献   

14.
The microscopic cause of conductivity in transparent conducting oxides like ZnO, In{2}O{3}, and SnO{2} is generally considered to be a point defect mechanism in the bulk, involving intrinsic lattice defects, extrinsic dopants, or unintentional impurities like hydrogen. We confirm here that the defect theory for O-vacancies can quantitatively account for the rather moderate conductivity and off-stoichiometry observed in bulk In{2}O{3} samples under high-temperature equilibrium conditions. However, nominally undoped thin-films of In{2}O{3} can exhibit surprisingly high conductivities exceeding by 4-5 orders of magnitude that of bulk samples under identical conditions (temperature and O{2} partial pressure). Employing surface calculations and thickness-dependent Hall measurements, we demonstrate that surface donors rather than bulk defects dominate the conductivity of In{2}O{3} thin films.  相似文献   

15.
兰生  李焜  高新昀 《物理学报》2017,66(13):136801-136801
空位缺陷石墨炔比完整石墨炔更贴近实际材料,而空位缺陷的多样性可导致更丰富的导热特性,因此模拟各种空位缺陷对热导率的影响显得尤为重要.采用非平衡分子动力学方法,通过在纳米带长度方向上施加周期性边界条件,基于AIREBO(adaptive intermolecular reactive empirical bond order)势函数描述碳-碳原子间的相互作用,模拟了300 K时单层石墨炔纳米带乙炔链上单空位缺陷和双空位缺陷以及苯环上单空位缺陷对其热导率的影响,利用Fourier定律计算热导率.模拟结果表明,对于几十纳米尺度范围内的石墨炔纳米带热导率,1)由于声子的散射集中和声子倒逆过程增强,与完美无缺陷的石墨炔纳米带相比,空位缺陷会导致石墨炔纳米带热导率的下降;2)由于声子态密度匹配程度高低的不同,相比于乙炔链上的空位缺陷,苯环的空位缺陷对石墨炔纳米带热导率影响更大,乙炔链上空位缺陷数量对石墨炔纳米带热导率的影响明显;3)由于尺寸效应问题,随着长度增加,石墨炔纳米带热导率会相应增大.本文的研究可为在一定尺度下进行石墨炔纳米带热导率的调控问题提供参考.  相似文献   

16.
By using first-principle calculations based on density functional theory, the geometries and electronic structures of the Stone–Wales defective chiral (6,2) silicon carbide nanotubes (SiCNTs) are investigated. Independent on their orientations, Stone–Wales defects form two asymmetric pentagons and heptagons coupled in pairs (5-7-7-5) and a defect energy level in the band gap of the SiCNT. By applying transverse electric fields, significant differences in the electronic structures of the defective (6,2) SiCNTs are achieved, which may provide the foundation of identifying the orientation of Stone–Wales defects in chiral SiCNTs.  相似文献   

17.
Electronic properties of both Pb and S vacancy defects in PbS(1^-00) have been studied using the first-principles density functional theory (DFT) calculations with the plane-wave pseudopotentials. It is found that the density of states (DOS) near the top of the valence band and the bottom of the conduction band is significantly modified by these defects. Our calculation indicates that in the case of S vacancy defects the Fermi energy shifts to the conduction band making it as an n-type PbS (donor). However, in the case of Pb vacancy, because of the appreciable change of the DOS, the system acts as a p-type PbS (accepter). In addition, the structural relaxation shows that the defect leads to outward relaxation of the nearest-neighbouring atoms and inward relaxation of the next-nearest neighbouring atoms.  相似文献   

18.
The annealing behavior of secondary defects generated in 2 MeV B- and P-, and 1 MeV As-implanted (100) Si with a dose of 5×1014 ions/cm2 has been investigated after rapid thermal annealing (RTA) treatment using cross-sectional TEM observations. The results are compared with ones obtained by furnace annealing (FA) treatment. RTA is more effective than FA for the defect density reduction of deep defects existing beyond 2 m depths from the surface in B- and P-implanted layers. However, when a dislocation loop diameter is close to the substrate surface, as in the case of As implantation, the loops climb up to the surface by 1250 °C RTA. Moreover, repeated RTA is effective for the suppression of secondary defect growth in B- and P-implanted layers, while there is no difference in defect density or configuration for As implantation between repeated and simple RTA.  相似文献   

19.
Tantalum phosphide(TaP) is predicted to be a kind of topological semimetal. Several defects of TaP induced by H irradiation are studied by the density functional theory. Electronic dispersion curves and density of states of these defects are reported. Various defects have different impacts on the topological properties. Weyl point positions are not affected by most defects. The H atom can tune the Fermi level as an interstitial. The defect of substitutional H on P site does not affect the topological properties. P and Ta vacancies of concentration 1/64 as well as the defect of substitutional H on Ta site destruct part of the Weyl points.  相似文献   

20.
XW Zhou  RE Jones 《J Phys Condens Matter》2012,24(32):325804, 1-325804,15
The thermal conductivity of a crystal is sensitive to the presence of surfaces and nanoscale defects. While this opens tremendous opportunities to tailor thermal conductivity, true 'phonon engineering' of nanocrystals for a specific electronic or thermoelectric application can only be achieved when the dependence of thermal conductivity on the defect density, size and spatial population is understood and quantified. Unfortunately, experimental studies of the effects of nanoscale defects are quite challenging. While molecular dynamics simulations are effective in calculating thermal conductivity, the defect density range that can be explored with feasible computing resources is unrealistically high. As a result, previous work has not generated a fully detailed understanding of the dependence of thermal conductivity on nanoscale defects. Using GaN as an example, we have combined a physically motivated analytical model and highly converged large-scale molecular dynamics simulations to study the effects of defects on thermal conductivity. An analytical expression for thermal conductivity as a function of void density, size, and population has been derived and corroborated with the model, simulations, and experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号