首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of inorganic salts (CaCl2, MgCl2, NaCl, NaI and NaSCN) on the aggregation behavior of a synthesized polyether with seven poly (ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide) (PEO-PPO-PEO) arms attached to a tetraethylenepentamine core (simplified AE73) at air/water and n-heptane/water interfaces has been investigated by interfacial tension and oscillating bubble methods. The additions of NaCl, CaCl2, and MgCl2 may facilitate the micellization of AE73 and increase its maximum interfacial excess concentration (Γmax) due to the “salting out” effect, while NaSCN induces opposite effect and NaI exerts little influence. The adsorption kinetics of AE73 is controlled not only by the diffusion between the bulk solution and the interfacial layer but also by the energetic and steric barriers generated by the already adsorbed molecules. The adsorption relaxation time of AE73 is reduced with the addition of salts and this phenomenon is more prominent at the n-heptane/water interface. The “salting in” ions decrease the dilational modulus of AE73 while the “salting out” ions induce an opposite effect. The mechanisms of the interaction between inorganic ions and the polyether were discussed; the difference in aggregation behavior between linear and branched block polyethers were also compared.  相似文献   

2.
The block polyethers with various branch structure, such as TEPA[(PO)36(EO)100]7, TEPA[(PO)36(EO)100(PO)36]7, and TEPA[(PO)36(EO)100(PO)56]7 were synthesized. Moreover, the aggregation behavior was investigated via the measurements of equilibrium surface tension, dynamic surface tension, and surface dilational viscoelasticity, in order to probe the effect of the block structure on the property of the branched block polyethers. The surface tension results show that the efficiency and effectiveness of the block polyethers to lower surface tension increase with the increase of the PO group numbers. The maximum surface excess concentration (Γmax) values and the minimum occupied area per molecule at the air/water interface (Amin) values of the branched block polyethers obtained from Gibbs adsorption equations increase and decrease with the increases of the PO group numbers, respectively. The dynamic parameters n and t* representing the diffusion speed of the polyether molecules from bulky solution to the subsurface and from the subsurface to the air/water surface are obtained according to the equation proposed by Rosen. The results show that the n values firstly increase and then decrease and t* values decrease with the increase of the polyether concentrations. The results of surface dilational viscoelasticity show that the dilational modulus of TEPA[(PO)36(EO)100(PO)56]7 is the largest among the three block copolymers at the low concentration (<1 mg L−1) but that of TEPA[(PO)36(EO)100]7 is the largest at the high concentration (>1 mg L−1).  相似文献   

3.
The aggregation behaviors of sodium deoxycholate (NaDC) at the air/water surface were investigated via surface tension and oscillating bubble measurements in the absence and presence of three alkaline amino acids, namely, L-Lysine (L-Lys), L-Arginine (L-Arg), and L-Histidine (L-His). The results of surface tension measurements show that NaDC has a lower ability to reduce the surface tension of water, because NaDC molecules orient at the surface in an oblique direction and tend to aggregate together, which is approved by molecular dynamics (MD) simulation. L-Lys is the most efficient of the three amino acids in reducing the critical aggregation concentration (cac) of NaDC in aqueous solution. The influence of amino acids on the dilational rheological properties of NaDC was studied using the drop shape analysis method in the frequency range from 0.02 to 0.5 Hz. The results reveal that the absolute modulus passes through a maximum value with increasing NaDC concentration. The addition of amino acids increases the absolute modulus of NaDC, and the maximum value is observed at much lower concentration. From the perspective of structures of amino acids, the performance of L-Arg is similar to that of L-His, and both of them bring out a smaller effect on the absolute modulus than that of L-Lys. From the above results, it may be presumed that electrostatic and hydrophobic effects are important impetus during the interaction between amino acids and NaDC at the air/water surface. Hydrogen bonding is so ubiquitous in the system that the difference of hydrogen bonding between NaDC and amino acid is ignored.  相似文献   

4.
The comparison of aggregation behaviors between the branched block polyether T1107 (polyether A) and linear polyether (EO)60(PO)40(EO)60 (polyether B) in aqueous solution are investigated by the MesoDyn simulation. Polyether A forms micelles at lower concentration and has a smaller aggregation number than B. Both the polyethers show the time-dependent micellar growth behaviors. The spherical micelles appear and then change to rod-like micelles with time evolution in the 10 vol% solution of polyether A. The micellar cluster appears and changes to pseudo-spherical micelles with time evolution in the 20 vol% solution of polyether A. However, the spherical micelles appear and change to micellar cluster with time evolution in the 20 vol% polyether B solution. The shear can induce the micellar transition of both block polyethers. When the shear rate is 1?×?105 s?1, the shear can induce the sphere-to-rod transition of both polyethers at the concentration of 10 and 20 vol%. When the shear rate is lower than 1?×?105 s?1, the huge micelles and micellar clusters can be formed in the 10 and 20 vol% polyether A systems under the shear, while the huge micelles are formed and then disaggregated with the time evolution in the 20 vol% polyether B system.  相似文献   

5.
Amphiphilic block copolymers are attracting con-siderable attention because they exhibit unique self- assembly properties in selective organic solvents[1―4]. Semicrystalline poly(ethylene oxide) (PEO), having many interesting physicochemical properties s…  相似文献   

6.
An investigation is reported on the interfacial properties of nanometric colloidal silica dispersions in the presence of a cationic surfactant. These properties are the result of different phenomena such as the particle attachment at the interface and the surfactant adsorption at the liquid and at the particle interfaces. Since the latter strongly influences the hydrophobicity/lipophilicity of the particle, i.e., the particle affinity for the fluid interfacial environment, all those phenomena are closely correlated. The equilibrium and dynamic interfacial tensions of the liquid/air and liquid/oil interfaces have been measured as a function of the surfactant and particle concentration. The interfacial rheology of the same systems has been also investigated by measuring the dilational viscoelasticity as a function of the area perturbation frequency. These results are then crossed with the values of the surfactant adsorption on the silica particles, indirectly estimated through experiments based on the centrifugation of the dispersions. In this way it has been possible to point out the mechanisms determining the observed kinetic and equilibrium features. In particular, an important role in the mixed particle-surfactant layer reorganization is played by the Brownian transport of particles from the bulk to the interface and by the surfactant redistribution between the particle and fluid interface.  相似文献   

7.
Differential scanning calorimetry (DSC), incoherent elastic neutron scattering, and neutron diffraction are used to demonstrate the presence of adsorbed solid multilayers of linear alcohols at the graphite-liquid alcohol interface. All alcohols studied (C(5)-C(18)) are found to form at least one monolayer. In addition all the even alcohols investigated (C(6)OH to C(18)OH) show multilayer formation. However, only the short odd alcohols (C(5)OH to C(11)OH) clearly exhibit additional features indicating multilayer formation.  相似文献   

8.
9.
10.
In situ neutron reflectivity was used to study thermally induced structural changes of the lamellae-forming polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films floating on the surface of an ionic liquid (IL). The IL, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, is a nonsolvent for PS and a temperature-tunable solvent for P2VP, and, as such, micellization can be induced at the air-IL interface by changing the temperature. Transmission electron microscopy and scanning force microscopy were used to investigate the resultant morphologies of the micellar films. It was found that highly ordered nanostructures consisting of spherical micelles with a PS core surrounded by a P2VP corona were produced. In addition, bilayer films of PS homopolymer on top of a PS-b-P2VP layer also underwent micellization with increasing temperature but the micellization was strongly dependent on the thickness of the PS and PS-b-P2VP layers.  相似文献   

11.
滴体积法测定了十六烷基溴化吡啶溶液的动态表面张力。考察了浓度、温度对动态表面张力的影响。讨论了十六烷基溴化吡啶分子在气/液界面上的吸附动力学,发现吸附遵从扩散-动力学控制机理.从表观扩散系数计算了吸附能垒,分析了吸附能垒存在的原因。  相似文献   

12.
Isotherms of monolayers of poly(ethylene oxide) (PEO) and polystyrene (PS) triblock copolymers spread at the air/water interface were obtained by film balance technique. In a low concentration regime, the PEO segments surrounding the PS cores behave the same way as in monolayers of PEO homopolymers. Langmuir-Blodgett (LB) films prepared by transferring the monolayers onto mica at various surface pressures were analyzed by atomic force microscopy (AFM). The results reveal that these block copolymers form micelles at the air/water interface. Within the micelles, the PS blocks act as anchoring structures at the interface. In several cases, aggregation patterns were modified by the dewetting processes that occur in Langmuir-Blodgett films transferred to solid substrates. High transfer surface pressures and metastable states favored these changes in morphology. A flowerlike surface micelle model is proposed to explain the organization of the surface circular micelles. The model can be generalized and applied to diblock copolymers as well. The model permits prediction of the aggregation number and the size of circular surface micelles formed by PEO/PS block copolymers at the air/water interface.  相似文献   

13.
The influence of ionic surfactants,cetyltrimethylammonium bromide(CTAB),self-assembled within silica-nanochannels of a hybrid mesoporous silica membrane(HMSM) on simple ion transfer(IT)behaviors at the meso-water/1,2-dichloroethane(W/DCE) interface arrays supported by such a HMSM was investigated by voltammetry for the first time.Significantly,it is found that the CTAB in HMSM can dramatically enhance the peak-current responses corresponding to ITs of some anions and even lower their Gibbs transfer energies from W to DCE,which could be ascribed to an anion-exchange process between anions and the bromide of CTAB associated with partial ion-dehydration induced by the CTAB.This work will provide a new strategy to study anion transfer processes and improve the electroanalytical performance for anion detection at the liquid/liquid interface.  相似文献   

14.
Gold nanoparticles (Au NPs) were prepared and surface-modified by mercaptosuccinic acid (MSA) to render a surface with carboxylic acid groups (MSA-Au). Octadecylamine (ODA) was used as a template monolayer to adsorb the Au NPs dispersed in the subphase. The effect of MSA concentration on the incorporation of Au NPs on the ODA monolayer and the relevant behavior of the mixed monolayer were studied using the pressure-area (pi-A) isotherm and transmission electron microscopy (TEM) observations. The experimental results showed that the adsorbed density of Au NPs is low without the surface modification by MSA. When MSA was added into the Au NP-containing subphase, the incorporation amount of Au NPs increased with increasing MSA concentration up to approximately 1 x 10-5 M for the particle density of 1.3 x 1011 particles/mL. With a further increase in the MSA concentration, the adsorbed particle density decreases due to competitive adsorption between the free MSA molecules and the MSA-Au NPs. It is inferred that free MSA molecules adsorb more easily than the MSA-Au NPs on the ODA monolayer. Therefore, an excess amount of MSA present in the subphase is detrimental to the incorporation of gold particles. The study on the monolayer behavior also shows that the pi-A isotherm of the ODA monolayer shifts right when small amounts of Au NPs or free MSA molecules are incorporated. However, when larger amounts of particles are adsorbed at the air/liquid interface, a left shift of the pi-A isotherm appears, probably due to the adsorption of ODA molecules onto the particle surface and the transferring of the particles from beneath the ODA monolayer to the air/water interface. According to the present method, it is possible to prepare uniform particulate films of controlled densities by controlling the particle concentration in the subphase, the MSA concentration, and the surface pressure of a mixed monolayer.  相似文献   

15.
The aggregation and supramolecular chirality of the interfacial assemblies of an achiral phthalcyanine derivative, zinc 2,3,9,10,16,17,23,24-octakis(octyloxy)-29 H,31 H-phthaloxyanine (ZnPc), were investigated, and a surface pressure dependent behavior was observed. It was found that ZnPc could be spread as a Langmuir film on water surface and transferred onto solid substrates by the horizontal lifting method. The compound formed mixed J- and H-aggregates in the transferred Langmuir-Blodgett (LB) films. Deconvolution of the broaden Q-band revealed three main components of the spectra, which corresponded to H- and J-aggregates and medium transition aggregates, whose relative contents could be modulated by the surface pressure at which the films were transferred. On the other hand, the transferred LB films composed of these aggregates showed Cotton effects in circular dichroism spectra when the floating film was compressed over a certain surface pressure although the compound itself was achiral. The cooperative arrangement of the macrocylic ring in a helical manner through the interfacial organization was suggested to be responsible for such optical activity in the LB films. A possible explanation based on the cooperative arrangement of the ZnPc building blocks in a helical sense stacking in the aggregates was proposed.  相似文献   

16.
Interfacial ion-association adsorption and aggregation of a water-soluble porphyrin, tetrakis(4-sulfonatephenyl)porphyrin (TPPS) diacid, which was promoted by a cationic cetyltrimethylammonium ion (CTA(+)), was studied by second harmonic generation (SHG) spectroscopy. Comparing the interfacial SH spectrum with the transmission absorption spectrum of TPPS in the aqueous solution elucidated the aggregation behavior of TPPS at the heptane/water interface. The time-dependent SHG spectra for TPPS aggregation and the interfacial tension lowering in the presence of CTA(+) were discussed on the basis of an electrostatic adsorption model. Then, it was suggested that TPPS diacid was highly concentrated by the ion-association with CTA(+) at the interface, which was the intermediate state before the final aggregated state.  相似文献   

17.
Bent-core liquid crystals show a variety of novel structures involving the interplay of molecular bend, tilt and polarisation. Here we investigate the microstructures of the B4, B7 and the dark conglomerate (DC) phases at the air/liquid crystal interface. In these phases, bent-core molecules undergo complex self-assembly, forming helical nanofilaments (the B4 phase), layer undulations (the B7 phase) and disordered focal conics (the DC phase) in the bulk. However, due to the fluidity of the phases and the homeotropic alignment at the interface, several different topographies are observed at the air/liquid crystal interface. We will discuss the surface structures discovered so far in the B4, B7 and DC phases and show how they help us to understand the microstructure and the self-assembly of the liquid crystal phases of bent-core molecules.  相似文献   

18.
The salt effects on molecular orientation at air/liquid methanol interface were investigated by the polarization-dependent sum frequency generation vibrational spectroscopy(SFG-VS). We clarified that the average tilting angle of the methyl group to be u = 308 58 at the air/pure methanol surface assuming a d-function orientational distribution. Upon the addition of 3 mol/L Na I, the methyl group tilts further away from the surface normal with a new u = 418 38. This orientational change does not explain the enhancement of the SFG-VS intensities when adding Na I, implying the number density of the methanol molecules with a net polar ordering in the surface region also changed with the Na I concentrations. These spectroscopic findings shed new light on the salt effects on the surfaces structures of the polar organic solutions. It was also shown that the accurate determination of the bulk refractive indices and Raman depolarization ratios for different salt concentrations is crucial to quantitatively interpret the SFG-VS data.  相似文献   

19.
20.
The surface tensions of aqueous solutions containing sodium octylbenzenesulfonate were measured by means of a processor tensiometer at 20°, 25°, 30° and 35°C. A test for the layer model and thickness of the adsorbed phase is proposed. By means of a linear regression the surfactant area at liquid/air interface was calculated. Finally, the molar-and surface-related thermodynamic functions were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号