共查询到20条相似文献,搜索用时 0 毫秒
1.
Fe部分替代Cu对低钴AB_5型贮氢合金相结构和电化学性能的影响 总被引:2,自引:0,他引:2
为了获得既具有较高电化学容量又具有良好循环稳定性的低钴AB5型贮氢合金,研究了Fe部分替代Cu对低钴AB5型贮氢合金相结构和电化学性能的影响.采用真空感应熔炼方法,制备了一系列含Cu和Fe的低钴AB5型贮氢合金LaNi3.55Mn0.35Co0.20Al0.20Cu0.85-xFex(x=0.10,0.20,0.25,0.40,0.60).粉末X射线衍射(XRD)分析表明,合金含有单一CaCu5型六方结构的LaNi5相,Fe部分替代Cu并没有改变合金的本体相结构,但随着Fe含量的增大,晶格参数a,c和晶胞体积V增大.电化学性能测试表明,随着x增加,合金的放电容量和高倍率放电能力降低,但是循环稳定性得到了显著提高.当x从0.10增加到0.60时,合金的200周循环稳定性(S200)从77.6%提高到89.9%.Fe替代Cu有利于提高合金的循环稳定性,这主要是随着Fe替代量增大,晶胞体积增大,晶格体积膨胀率明显减小,合金的抗粉化能力增强. 相似文献
2.
为提高La-Mg-Ni基储氢合金La0.73Ce0.18Mg0.09Ni3.20Al0.21Mn0.10Co0.60的电化学性能,由5-溴水杨酸和苯胺合成了一种席夫碱作为表面改性剂,对储氢合金进行表面处理。 从紫外与红外图谱可知,合成了目标席夫碱。 添加1%席夫碱后,合金的相结构没有改变。 与未添加席夫碱的合金电极相比,电极的最大放电容量略有下降,但50次充放电循环后合金电极的容量保持率有较大幅度提高,添加5%席夫碱的电极容量保持率从63%提高到75%,高倍率放电性能也有增加。 经表面处理后,合金电极的交换电流密度I0与极限电流密度IL均有大幅度提高,动电位极化曲线也表明合金电极的抗腐蚀能力变强。 以上结果均表明,添加少量席夫碱有助于改善储氢合金电极的电化学性能。 相似文献
3.
《无机化学学报》2017,(10)
系统地研究了Al含量对富Ce储氢合金MmNi_(4-x)Co_(0.7)Mn_(0.3)Al_x(x=0,0.1,0.2,0.3)电极综合电化学性能,尤其是对低温和高倍率性能的影响。在常温下,储氢合金电极放电容量和循环性能均随着Al含量的增加而增加,而高倍率放电性能严重下降。-20℃时,放电容量仍随着Al含量的增加而增加,但在-40℃下放电容量随之严重衰退。电化学动力学结果表明,常温下高Al合金高倍率性能的降低主要是由于电极表面电荷转移过程的恶化;低温-40℃下,Al同时降低了合金电极的表面电催化活性以及体相H扩散能力,严重恶化电极过程动力学,从而导致了高Al合金极低的容量及电压输出。考虑到各电极的综合电化学性能,MmNi_(3.8)Co_(0.7)Mn_(0.3)Al_(0.2)为最佳的成分配比。 相似文献
4.
5.
报道了钴替代镍对储氢合金Ml(NiCoMnAl)5.4的微观结构以及-30-+80℃的电化学容量的影响,其中钴含量分别为:0,1.31,2.63,3.94,5.25,6.56%(质量分数)。所有合金都先采用真空还原熔炼,然后进行快淬。结果发现,合金在不同温度下的电化学容量取决于合金的成分和制备方法。随钴含量增加,合金在较高温度(40-80℃)下的电化学容量提高,温度较低(-30-0℃)时则容量降低。随温度升高,快淬技术与铸锭技术相比,更能有效地提高舍金的容量。充放电电位曲线分析表明,高钴含量和快淬技术可以提高合金的析氢电位,从而有效地提高合金的高温容量。相反,较低的钴含量和铸态工艺可改善合金低温时的容量,这是由于低钴含量和铸成立工艺可使低温时的析氢电位提高,析氢反应滞后,同时充放电的电位差减小。X射线衍射表明,所有合金样品都是单相的六方晶系CaCu5型结构,并且随钴含量增加,晶格参数增大。由于成分更加均匀同时晶格应力和缺陷减少,快淬带主峰的半高宽值降低。 相似文献
6.
使用机械合金化法成功地合成了镁基储氢合金MgNi, Mg0.9Ti0.1Ni,和Mg0.9Ti0.06Zr0.04Ni,并对其结构和电化学性能进行了研究。X射线衍射(XRD)表明,这一系列合金的主相为非晶态,透射电镜(TEM)表明,Ti和Zr取代的合金的颗粒直径约为2~4 μm。Ti和Zr的取代提高了合金电极的循环寿命。50周充放电循环后, Mg0.9Ti0.06Zr0.04Ni合金电极的放电容量高于MgNi合金电极91.74%,高于Mg0.9Ti0.1Ni合金电极37.96%。电极容量衰减的主要原因是在合金电极表面形成Mg的腐蚀产物Mg(OH)2。动电位扫描结果显示,Ti和Zr的添加提高了合金电极在碱液中的抗腐蚀性能。交流阻抗(EIS)测试表明,适量Ti和Zr的添加可以明显提高合金电极的电催化活性。 相似文献
7.
电沉积工艺对Mg-Ni储氢合金的电化学性能的影响 总被引:3,自引:0,他引:3
用电沉积的方法制备了镁 镍储氢合金,探讨了电沉积条件对合金的电化学性能的影响.XRD显示沉积层中含有非晶态Mg Ni相和微晶态Mg相.AAS分析表明沉积合金中Mg的摩尔分数达 8. 57%.合金的放电容量最高为 75. 547mA·h·g-1. 相似文献
8.
采用感应熔炼方法制备了A2B7型La0.83-0.5x(Pr0.1Nd0.1Sm0.1Gd0.2)xMg0.17Ni3.1Co0.3Al0.1(x=0~1.66)储氢合金,并在He+Ar气氛和1 173 K下进行退火处理。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学方法,研究了混合稀土(Pr,Nd,Sm,Gd)替代La元素对合金物相结构和电化学性能的影响。合金相结构分析表明,混合稀土含量对合金组成和相结构有重要的影响,随混合稀土含量x的增加,合金中主相A2B7型(2H-Ce2Ni7型+3R-Gd2Co7型)相丰度逐渐增多,其中2H-Ce2Ni7型相丰度先增多后减少,3RGd2Co7型相丰度则逐渐增加,主相晶胞参数随x增加而减小。电化学结果表明,随混合稀土含量增加,放氢平台压逐渐升高,合金电极的最大放电容量和循环稳定性均呈先增大后减小的规律,其中x=0.4合金电极具有最高的电化学放电容量(389.8 mAh·g-1)和最佳的循环寿命(S100=91.30%);合金电极的高倍率放电性能(HRD)则随x的增加获得显著提高。适量的混合稀土替代量可显著改善合金电极的综合电化学性能。 相似文献
9.
用机械球磨法分别以Ti、B、复合物TiB对非晶态Mg45Ti3V2Ni50储氢合金进行了表面修饰.实验结果表明,恰当比例的TiB球磨修饰对镁基储氢合金循环稳定性远好于Ti、B同比例单独修饰合金电极的效果.Mg45Ti3V2Ni50与TiB质量比为2∶1的Mg45Ti3V2Ni50-TiB(2∶1)复合合金电极的初始放电容量为529.4mAh·g-1,第50次循环放电容量仍为277.1mAh·g-1.复合物TiB中Ti、B元素之间和复合合金中合金元素与TiB之间产生了金属与非金属的协同作用,导致复合合金新的立体褶皱结构的生成,增强了修饰层与合金间的作用,Mg45Ti3V2Ni50-TiB(2∶1)合金电极表面活性增强,循环稳定性显著提高. 相似文献
10.
通过少量Y对La的取代,研究了La0.75-xYxMg0.25Ni3.17Al0.13和La0.75-xYxMg0.25Ni3.37Al0.13(其中x=0.00,0.05,0.10)体系中Y对合金晶体结构及电化学性能的影响。通过X射线衍射实验、电化学性能测试,结果表明上述两体系主相为Ce2Ni7相、Pr5Co19相。少量的取代对活化性能、最大放电容量影响不大,但对循环稳定性、放氢平台压影响显著,而且在不同主相结构中,影响效果不一样。当x从0.00增大到0.10时:主相为Ce2Ni7相La0.75-xYxMg0.25Ni3.17Al0.13的S80%由222周下降到112周,放氢平台压则由0.015 MPa上升到0.045 MPa;而主相为Pr5Co19相La0.75-xYxMg0.25Ni3.37Al0.13的S80%由172周下降到127周,放氢平台压则由0.019 MPa上升到0.076 MPa。 相似文献
11.
12.
研究了几种AB5非化学计量贮氢合金的电化学性能 ,及在低电流密度与高电流密度放电下取代元素对放电比容量、活化性能及循环寿命的影响。Sn ,Co,Mn的加入有利于提高合金的电化学贮氢容量 ,La(NiSn) 5.14 ,La(NiSnCo) 5.12 和La(NiSnMn) 5.12 具有相同的电化学贮氢容量与活化特性。尽管La(NiSn) 5.14 大电流放电性能优于La(NiSnCo) 5.12 和La(NiSnMn) 5.12 ,但其寿命短。Mn ,Co和Al可大大提高合金的使用寿命。La(NiSnCo) 5.12 被认为是一种理想的贮氢合金。 相似文献
13.
用高频感应熔炼方法制备了稀土系A2B7型La0.83-xGdxMg0.17N i3.05Co0.3A l0.15(x=0~0.5)储氢合金,在Ar气氛中和1173 K下对铸态合金进行退火处理,通过X射线衍射(XRD)、电子探针显微分析方法(EPMA)和电化学测试等分析方法系统研究了稀土Gd部分替代La元素对合金微观组织和电化学性能的影响规律。研究结果表明,合金退火组织主要由Ce2N i7型、Gd2Co7型、Pr5Co19型、PuN i3型和CaCu5型相组成,稀土Gd元素能有效减少和抑制退火组织中CaCu5型相的形成,随Gd含量x增加,合金相组成中A2B7型(Ce2N i7和Gd2Co7型)相丰度呈先增加后减小的规律,当x=0.2时其相丰度最大(91.0%)。合金的PCT吸氢平台压随Gd含量的增加而升高,x=0.5时吸氢平台压力接近0.1 MPa,x=0.2时合金的吸氢量达到最大值1.34%。电化学测试分析表明,随Gd含量x的增加,合金电极最大放电容量和容量保持率均呈先增加后减小的规律,适量的Gd元素可明显改善合金的综合电化学性能。当x=0.2时,合金电极放电容量达到最大值392.9 mAh.g-1,经100... 相似文献
14.
退火对富铈Mm(NiCoMnAl)5储氢合金电化学性能的影响 总被引:4,自引:0,他引:4
研究了热处理对富铈Mm(NiCoMnAl)5合金晶体结构和电化学性能的影响,实验发现热处理使合金的X射线衍射峰变尖变窄,表明热处理使合金的成分变得均匀,晶格畸变和缺陷减少;但同时,合金的过电势和充放电电势滞后明显增加,特别是在高电流密度150mA·g-1充放电,合金的充放电电极势之间产生了很大的滞后。扫描电镜结果显示,退火合金比铸态合金的晶粒更大更完整;电化学测试结果表明,热处理后合金电化学容量和循环寿命均降低。 相似文献
15.
MgNi2添加对AB5型储氢合金电化学性能的影响 总被引:1,自引:0,他引:1
制得了含Mg的AB5型稀土合金, 研究了合金添加Mg后合金电化学性能的变化. 采用ICP, XRD对合金组成和结构进行分析, 并通过EIS、CV、SEM和阳极极化曲线研究了电化学反应机理. 相似文献
16.
17.
纳米氧化铜掺杂对储氢合金电极性能的影响 总被引:5,自引:0,他引:5
采用纳米氧化铜作为添加剂制备储氢合金电极, 考察了氧化铜对储氢合金电池储备容量的调节作用, 分析了掺杂后电极及电池质量的变化, 研究了掺杂合金电极的电化学性能, 并用SEM、EIS、CV等方法分析了反应的电化学机理. CV、SEM结果表明, 氧化铜在首次充电过程中被还原成低价态沉积在合金颗粒表面, 由于氧化铜比容量远大于合金, 可以通过掺杂氧化铜调节合金的储备容量. 电化学测试结果表明, 掺杂合金电极具有更好的高倍率充放电能力和循环性能. EIS分析结果表明, 掺杂合金电极导电性增强, 电化学活性提高. 相似文献
18.
在SC型高功率镍氢电池的负极中添加不同含量的碳纳米管制备SC型高功率镍氢电池, 并对其容量、大电流放电性能和循环寿命进行研究. 结果发现, 碳纳米管的加入有利于提高电池的综合性能, 尤其是大电流放电性能和循环寿命; 加入碳纳米管的含量为0.8%(w)时电池的综合性能最好, 其最高容量达到3369 mAh, 2C(6000 mA)循环600次后容量仍然保持在3280 mAh(97% DOD(放电深度))以上, 5C(15000 mA)循环180 次容量仍然有2850 mAh(89.1% DOD)以上. 相似文献
19.
新型镁基储氢合金的合成及电化学性能的研究 总被引:16,自引:1,他引:16
用扩散法成功地合成了Mg1.5Al0.5-xNiVx(x=0,0.1,0.2,0.3,0.4)系列合金。XRD结构分析表明,合金中出现一个新的物相,其化学式为Mg3AlNi2,属立方晶系,Fd3m空间群,新相具有很好的电化学性能。钒的添加使合金的容量进一步提高。未经任何预处理的Mg1.5Al0.3V0.2Ni合金的最大放电容量达到333mA·h·g-1(50mA·g-1,-0.5Vvs.Hg/HgO).Al对六方晶系Mg2Ni合金结构中Mg的部分取代对于延长合金的循环寿命有重要作用。 相似文献
20.
采用感应熔炼方法制备了A2B7型La0.83-0.5x(Pr0.1Nd0.1Sm0.1Gd0.2)xMg0.17Ni3.1Co0.3Al0.1(x=0~1.66)储氢合金,并在He+Ar气氛和 1 173 K下进行退火处理。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学方法,研究了混合稀土(Pr,Nd,Sm,Gd)替代La元素对合金物相结构和电化学性能的影响。合金相结构分析表明,混合稀土含量对合金组成和相结构有重要的影响,随混合稀土含量x的增加,合金中主相A2B7型(2H-Ce2Ni7型+3R-Gd2Co7型)相丰度逐渐增多,其中2H-Ce2Ni7型相丰度先增多后减少,3R-Gd2Co7型相丰度则逐渐增加,主相晶胞参数随x增加而减小。电化学结果表明,随混合稀土含量增加,放氢平台压逐渐升高,合金电极的最大放电容量和循环稳定性均呈先增大后减小的规律,其中x=0.4合金电极具有最高的电化学放电容量(389.8 mAh·g-1)和最佳的循环寿命(S100=91.30%);合金电极的高倍率放电性能(HRD)则随x的增加获得显著提高。适量的混合稀土替代量可显著改善合金电极的综合电化学性能。 相似文献