首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2nd-order upwind TVD scheme was used to solve the laminar, fully Navier-Stokes equations. The numerical simulations were done on the propagation of a shock wave with Ma S = 2 and 4 into a hydrogen and air mixture in a duct and a duct with a rearward step. The results indicate that a swirling vortex may be generated in the lopsided interface behind the moving shock. Meanwhile, the complex shock system is also formed in this shear flow region. A large swirling vortex is produced and the fuel mixing can be enhanced by a shock wave at low Mach number. But in a duct with a rearward step, the shock almost disappears in hydrogen for Ma S = 2. The shock in hydrogen will become strong if Ma S is large. Similar to the condition of a shock moving in a duct full of hydrogen and air, a large vortex can be formed in the shear flow region. The large swirling vortex even gets through the reflected shock and impacts on the lower wall. Then, the distribution of hydrogen behind the rearward step is divided into two regions. The transition from regular reflection to Mach reflection was observed as well in case Ma S = 4.  相似文献   

2.
This paper addresses nonlinear effects which result from the interaction of shock waves with vortices. A series of experiments are carried out, which involve the interaction of a strong shock wave with a single plane vorticity wave and a randomly distributed wave system. These experiments are first conducted in the linear regime to obtain a mutual verification of theory and computation. They are subsequently extended into the nonlinear regime. A systematic study of the interaction of a plane shock wave and a single vortex is then conducted. Specifically, we investigate the conditions under which nonlinear effects become important, both as a function of shock Mach number, M 1, and incident vortex strength (characterized by its circulation Γ). The shock Mach number is varied from 2 to 8, while the circulation of the vortex is varied from infinitesimally small values (linear theory) to unity. Budgets of vorticity, dilatation, and pressure are obtained. They indicate that nonlinear effects become more significant as both the shock Mach number and the circulation increase. For Mach numbers equal to 5 and above, the dilatation in the vortex core grows quadratically with circulation. An acoustic wave propagates radially outward from the vortex center. As circulation increases, its upstream-facing front steepens at low Mach numbers, and its downstream-facing front steepens at high Mach numbers. A high Mach number asymptotic expansion of the Rankine--Hugoniot conditions reveals that nonlinear effects dominate both the shock motion and the downstream flow for ΓM 1 > 1. Received 28 June 1997 and accepted 25 November 1997  相似文献   

3.
In this article, the interaction of a normal shock with a yawed wedge moving at supersonic speed has been considered. The vorticity distribution of a particle over the diffracted shock wave for various combinations of yawed angles, Mach number of the shock wave and Mach number of the moving wedge have been obtained. Further triple point angle χ in Mach reflection has been calculated for the various parameters.   相似文献   

4.
Abstract

Modification of a two-dimensional isotropic trbulent flow by passage of a weak shock wave was numerically studied by the explicit spectral collocation method with the fourier series in the ranges of M1 = 0.14?0.21 and Ms = 1.06?1.14. The density 1 trbulent kinetic energy increased by 10 to 19 % and density fluctuation increased by 14 to 50 % in proportion to the shock wave mach number. The amplification of turbulent kinetic energy did not change by increase of the turbulent Mach number, while that of density fluctuation decreased from1.35 to 1.15%. The argumentation of turbulent kinetic energy appeared at moderate and high wave numbers of energy spectra and resulted in a reduction of the integral scale by3.33 to 5.4%. Modifications mechanisms of turbulent kinetic energy, density fluctuation and vorticity were verified by the transport equations It was shown that the decreased amplification of the density fluctuation In the increased trbulent Mach number attributed to the unchanged production terms and the negative dilatation correlation behind the shock wave.the vorticity-dilatation term was responsible for more than 80 % of the total vorticity production at the shock front.  相似文献   

5.
A. Chpoun  G. Ben-Dor 《Shock Waves》1995,5(4):199-203
Numerical calculations based on the Navier-Stokes equations are carried out to investigate the reflection of shock waves over straight reflecting surfaces in steady flows. The results for a flow Mach number of M0=4.96 confirm the recent experimental findings of Chpoun et al. (1995) concerning the transition from regular to Mach reflection. Numerical calculations as well as experimental results show a hysteresis phenomenon during this transition and the regular reflection is found to be stable in the dual-solution domain in which theoretically both regular and Mach reflection wave configurations are possible.  相似文献   

6.
The results of an experimental and numerical investigation of the process of diffraction of shock waves from a square channel at a ninety-degree convex corner are presented for various incident shock wave Mach numbers M0 (1.4<M0<7). The type of reflection of the near-wall fragment of the diffracting shock wave from the wall and the wave velocity are determined as functions of M0, direction, and time. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 145–151, January–February, 2000. The work was carried out with partial support from the Russian Foundation for Basic Research (project No. 96-02-16170a).  相似文献   

7.
The diffraction of a shock wave (M0=4.7) at an angle close to 180 has been experimentally investigated for the three-dimensional case. Interferograms of the flow and the pressure distribution on the back wall in the course of its interaction with the diffracted wave were obtained. Rotation of the flow structure behind the shock wave relative to the axis of symmetry was observed as the flow pattern develops in time and space.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 200–201 March–April, 1993.  相似文献   

8.
The density distribution behind a nonstationary shock wave for a definite value of the Mach number M*, which depends on = cp/cv, is considered. Use is made of the previously established fact [1] that for M = M*() there exists a connection between the first and second derivatives of the density along the normal behind the wave. An investigation is made into the density profile in dimensionless variables behind plane, cylindrical, and spherical shock waves in the neighborhood of the shock front. In the first case, if the gas in front of the wave is homogeneous, only two types of density profile are possible (up to small quantities of third order in the coordinate). In the second and third cases, the form of the density distribution also depends on a parameter, the ratio of the first derivative along the normal of the density behind the wave to the radius of curvature of the wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 163–167, November–December, 1979.  相似文献   

9.
This work investigates the pressure amplification experienced behind a rigid, porous barrier that is exposed to a planar shock. Numerical simulations are performed in two dimensions using the full Navier–Stokes equations for a M = 1.3 incoming shock wave. An array of cylinders is positioned at some distance from a solid wall and the shock wave is allowed to propagate past the barrier and reflect off the wall. Pressure at the wall is recorded and the flowfield is examined using numerical schlieren images. This work is intended to provide insight into the interaction of a shock wave with a cloth barrier shielding a solid boundary, and therefore the Reynolds number is small (i.e., Re = 500 to 2000). Additionally, the effect of porosity of the barrier is examined. While the pressure plots display no distinct trend based on Reynolds number, the porosity has a marked effect on the flowfield structure and endwall pressure, with the pressure increasing as porosity decreases until a maximum value is reached.   相似文献   

10.
A simplified analytical model of the Mach reflection of a planar shock wave over a concave cylindrical wedge has been used to predict the triple point trajectory and the triple point trajectory angle at glancing incidence.Comparison with experimental results suggests that the simplified approach for predicting the triple point trajectory is good for an incident shock wave Mach number, Mi, less than 1.1. However, the prediction of the triple point trajectory angle at glancing incidence is good for any value of Mi as long as the assumption of a perfect gas is valid.  相似文献   

11.
G. Emanuel  H. Hekiri 《Shock Waves》2007,17(1-2):85-94
A theory is developed for the vorticity and its substantial derivative just downstream of a curved shock wave, the resulting formulas are exact, algebraic, and explicit. Analysis is for a cylinder-wedge or sphere-cone body, at zero incidence, whose downstream half-angle is θb. Derived formulas directly depend only on the ratio of specific heats, γ, the freestream Mach number, M 1, the local slope and curvature of the shock, and the dimensionality parameter, σ, which is zero for a two-dimensional shock and unity for an axisymmetric shock. In turn, the slope and curvature depend on γ, M 1, and θb. Numerical results are provided for a bow shock in which θb is 5°, 10°, or 15°, M 1 is 2, 4, or 6, and γ = 1.4. There is little dependence on the half angle but a strong dependence on the freestream Mach number and on dimensionality. For vorticity and its substantial derivative, the dimensionality dependence gradually decreases with increasing Mach number. In comparison to the two-dimensional case, an axisymmetric shock generates considerable vorticity in a region relatively close to the symmetry axis. Moreover, the magnitude of the vorticity, in this region, is further enhanced in the flow downstream of the shock. This dimensionality difference in vorticity and its substantial derivative is attributed to the three-dimensional relief effect in an axisymmetric flow.
  相似文献   

12.
Y. Onishi 《Shock Waves》1991,1(4):293-299
The flow fields associated with the interaction of a normal shock wave with a plane wall kept at a constant temperature were studied based on kinetic theory which can describe appropriately the shock structure and its reflection process. With the use of a difference scheme, the time developments of the distributions of the fluid dynamic quantities (velocity, temperature, pressure and number density of the gas) were obtained numerically from the BGK model of the Boltzmann equation subject to the condition of diffusive-reflection at the wall for several cases of incident Mach number:M 1=1.2, 1.5, 2.0, 3.0, 4.0, 5.0 and 6.0. The reflection process of the shocks is shown explicitly together with the resulting formation of the flow fields as time goes on. The nonzero uniform velocity toward the wall occurring between the viscous boundary layer and the reflected shock wave is found to be fairly large, the magnitude of which is of the order of several percent of the velocity induced behind the incident shock, decreasing as the incident Mach number increases. It is also seen that a region of positive velocity (away from the wall) within the viscous boundary layer manifests itself in the immediate vicinity of the wall, which is distinct for larger incident Mach numbers. Some of the calculated density profiles are compared with available experimental data and also with numerical results based on the Navier-Stokes equations. The agreement between the three results is fairly good except in the region close to the wall, where the difference in the conditions of these studies and the inappropriateness of the Navier-Stokes equations manifest themselves greatly in the gas behavior.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

13.
Whitham's approximation for handling shock wave propagation in area changes (reductions) in a duct was checked in comparison with a numerical solution. Also the Whitham approximation for shock wave propagation from a constant cross-sectional duct to a duct of a smaller cross-sectional area was studied and compared with a numerical solution. It was found that for modest incident shock Mach numbers and modest area reductions the Whitham approximation provided a fair solution for the shock Mach number and for the post-shock pressure. For higher shock Mach numbers and/or area reductions, large discrepancies exit between the approximate and exact solutions. A wider range of applicability of the Whitham approximation is found for the monotonical area reduction case; it is quite narrow for the passage of a shock wave from a wider to a narrower duct case. In addition, the effect of the extent of the area change region on the time required for reaching a quasi-steady flow was studied. It was shown that the longer the area change segment is, the longer it takes to reach a quasi-steady flow.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

14.
Supersonic H2-air combustions behind oblique shock waves   总被引:1,自引:0,他引:1  
In order to study the mechanisms of initiation and stabilization of H2-Air combustions (stoechiometric mixture initially atT 0=293 K andp 0=0.5 bar) in supersonic flow conditions behind an oblique shock wave (OSW), an original technique is used where OSW is generated in this mixture by the lateral expansion of the burnt gas behind a normal CJ gaseous detonation propagating into a bounding reactive mixture. Four Mach numberM of propagation of OSW are considered in the study, namelyM=7.7-6.1-4.4 and 3. Depending on the Mach numberM and inclinaison angle of OSW different regimes of combustion may occur in the driven mixture. For high values ofM (6.1 and 7.7) delayed steady overdriven oblique detonation waves (SODW) were obtained with a near CJ detonation wave as the critical regime. It was found that SODW obtained correspond quite well to prediction of the polar method. When thermal conditions behind the OSW are lower, either for high Mach number 6.1 and 7.7 for smaller angle than the previous case, or for lower Mach number, 4.4 and 3, the flame initiated at the apex is stabilized as a turbulent oblique flame behind the OSW. With much lower conditions, no combustion appears in the H2-Air mixture.  相似文献   

15.
M. Sun  K. Takayama 《Shock Waves》1997,7(5):287-295
This paper deals with the formation of a secondary shock wave behind the shock wave diffracting at a two-dimensional convex corner for incident shock Mach numbers ranging from 1.03 to 1.74 in air. Experiments were carried out using a 60 mm 150 mm shock tube equipped with holographic interferometry. The threshold incident shock wave Mach number () at which a secondary shock wave appeared was found to be = 1.32 at an 81° corner and = 1.33 at a 120° corner. These secondary shock waves are formed due to the existence of a locally supersonic flow behind the diffracting shock wave. Behind the diffracting shock wave, the subsonic flow is accelerated and eventually becomes locally supersonic. A simple unsteady flow analysis revealed that for gases with specific heats ratio the threshold shock wave Mach number was = 1.346. When the value of is less than this, the vortex is formed at the corner without any discontinuous waves accompanying above the slip line. The viscosity was found to be less effective on the threshold of the secondary shock wave, although it attenuated the pressure jump at the secondary shock wave. This is well understood by the consideration of the effect of the wall friction in one-dimensional duct flows. In order to interpret the experimental results a numerical simulation using a shock adaptive unstructured grid Eulerian solver was also carried out. Received 1 May 1996 / Accepted 12 September 1996  相似文献   

16.
Interaction of a shock with a sphere suspended in a vertical shock tube   总被引:1,自引:0,他引:1  
Shock wave interaction with a sphere is one of the benchmark tests in shock dynamics. However, unlike wind tunnel experiments, unsteady drag force on a sphere installed in a shock tube have not been measured quantitatively. This paper presents an experimental and numerical study of the unsteady drag force acting on a 80 mm diameter sphere which was vertically suspended in a 300 mm x 300 mm vertical shock tube and loaded with a planar shock wave of M s = 1.22 in air. The drag force history on the sphere was measured by an accelerometer installed in it. Accelerometer output signals were subjected to deconvolution data processing, producing a drag history comparable to that obtained by solving numerically the Navier-Stokes equations. A good agreement was obtained between the measured and computed drag force histories. In order to interpret the interaction of shock wave over the sphere, high speed video recordings and double exposure holographic interferometric observations were also conducted. It was found that the maximum drag force appeared not at the time instant when the shock arrived at the equator of the sphere, but at some earlier time before the transition of the reflected shock wave from regular to Mach reflection took place. A negative value of the drag force was observed, even though for a very short duration of time, when the Mach stem of the transmitted shock wave relfected and focused at the rear stagnation point of the sphere.Received: 31 March 2003, Accepted: 7 July 2003, Published online: 2 September 2003  相似文献   

17.
The stage of regular reflection of a plane shock wave from a blunt body (cylinder, sphere, and ellipsoid of revolution) is considered. At the point of intersection of the reflected shock wave and the surface of the body, analytic expressions are found for the derivative of the Mach number of the wave with respect to the time, the curvature of the wave, the normal derivatives of the density and the pressure, and the derivative of the Mach number along the wave front. It is shown that the flow has a singularity at = * < ** (s** is the limiting angle [1] of regular reflection of a shock wave from a rigid surface). The distribution of the parameters in the region between the reflected shock wave and the surface of the body is found up to terms of third order in the time. The density distribution behind the reflected shock wave was measured experimentally, and also the shape of the reflected wave at different instants of time.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 94–100, March–April, 1980.  相似文献   

18.
H. Hekiri  G. Emanuel 《Shock Waves》2011,21(6):511-521
The existence and characteristics of shock wave triple points are examined. The analysis utilizes a single flow plane for the three shocks and is local to the triple point. It applies when the flow is unsteady, three-dimensional, and the upstream flow is nonuniform. Under more restrictive conditions, a relation is also derived for the ratio of the curvature of the Mach stem to that of the reflected shock. For given values of the ratio of specific heats, γ, and the upstream Mach number, M 1, a solution window is established. A parametric set of solutions is generated within the window for γ = 1, 1.4, and 5/3 and for 16 values of M 1 ranging from solution onset to M 1 = 6.A solution can be one of three types, these stem from the velocity tangency condition along the slip stream. Topics are addressed such as solution multiplicity, shock wave and slip stream orientation, the nature of the reflected wave (weak, strong, inverted, normal), the nature of the Mach stem (weak, strong, normal), and differences due to changes in γ and M 1.  相似文献   

19.
A theory is proposed for the design of a uniform tunnel-entrance hood whose cross-sectional area exceeds the tunnel area . A train entering the tunnel produces a low-frequency compression wave that can be subject to nonlinear steepening in a long tunnel. An optimized hood of length ℓh increases the initial thickness of the compression wave front from R/M to ℓh/M, where Rh is the nominal radius of the tunnel and M is the train Mach number. In addition, the pressure rise should be linear across the wave front to obtain an overall minimum value of the subjectively important pressure gradient. This is achieved in a uniform hood by distributing windows along the hood wall to vent away high-pressure air displaced by the train. We consider the problem of determining the distribution and sizes of these windows and the magnitude of the area ratio to ensure that the hood behaves optimally at low-train Mach numbers (M<0.2), when the hood can be regarded as being acoustically compact. At the projected higher Mach numbers of advanced high-speed trains (0.4, say) recent analysis for hoods of uniform cross-section by Howe in 2003 indicates that a hood optimized for low Mach number operations continues to produce an essentially linear pressure rise across a compression wave of thickness ℓh/M except for a low-amplitude oscillation at the very front of the wave.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号