首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
General relativistic nonlinear spinor equations are proposed which reduce in the linear approximation to the Dirac equations, and in the slightly nonlinear approximation reduce to the Ivanenko - Heisenberg equations. When written in a vector form, the nonlinear spinor equations take the form of the Einstein equations, in which matter is produced by spinor fields.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 121–125, March, 1977.The author thanks professor D. D. Ivanenko for his support and a number of useful observations.  相似文献   

2.
The relationship between Einstein's vacuum field equations and classical spin-3/2 field equations is re-explored using two-component spinor valued differential forms. One-form and two-form expressions for spin-3/2 fields and their field equations are considered and a Lagrangian formulation is presented. Complex structures defined by spin-3/2 fields are considered.  相似文献   

3.
The relationship between Einstein's field equations and classical higher spin field equations is investigated using two-component spinor valued differential forms. Linear systems of equations associated to both the vacuum and coupled gravitational matter field equations are constructed. The latter equations are shown to be the integrability conditions of the linear systems.  相似文献   

4.
5.
Flagpole and flag-dipole spinors are particular classes of spinor fields that has been recently used in different branches of theoretical physics. In this paper, we study the possibility and consequences of these spinor fields to induce an underlying fluid flow structure in the background of Kerr spacetimes. We show that flag-dipole spinor fields are solutions of the equations of motion in this context. To our knowledge, this is the second time that this class of spinor field appears as a physical solution, the first one occurring as a solution of the Dirac equation in ESK gravities.  相似文献   

6.
A class of theories of gravitation that naturally incorporates preferred frames of reference is presented. The underlying space-time geometry consists of a partial parallelization of space-time and has properties of Riemann—Cartan as well as teleparallel geometry. Within this geometry, the kinematic quantities of preferred frames are associated with torsion fields. Using a variational method, it is shown in which way action functionals for this geometry can be constructed. For a special action the field equations are derived and the coupling to spinor fields is discussed.  相似文献   

7.
The concept of a spinor structure at spacelike infinity is introduced for space-times which are asymptotically flat. It is shown how zero-rest-mass fields on space-time acquire smooth limits on this structure and that these limits satisfy certain differential equations characterized by the helicity and regularity of the field. The geometry of the limits of twistor fields is also discussed, and it seems possible that one can define the momentum and angular momentum of an asymptotically flat space-time in terms of a twistor space at spacelike infinity.  相似文献   

8.
In 1999, Faraoni wrote a simple second-order linear differential equation for FRW cosmologies with barotropic fluids. His results have been extended by Rosu, who employed techniques belonging to nonrelativistic supersymmetry to obtain time-dependent effective adiabatic indices. Further extensions are presented here using the known connection between the linear second-order differential equations and Dirac-like equations in the same supersymmetric context. These extensions are equivalent to adding an imaginary part to the effective adiabatic index, which is proportional to the mass parameter of the Dirac spinor. The natural physical interpretation of the imaginary part is related to the particular dissipation and instabilities of the effective barotropic FRW hydrodynamics that are introduced by means of this supersymmetric scheme.  相似文献   

9.
An equation of spinor algebra, which is specified by two positive integers,M andN, is solved by relating it to the problem of integrating a two-dimensional Hamiltonian homogeneous polynomial system of ordinary differential equations, whose degree isN}-1. The case in whichN=1 reduces to a well-known result of spinor algebra. The caseM=N=4 is of relevance in the study of symmetry operators of Maxwell's equations on a curved space-time. It is also shown, using spinor notation, that the first integral for a general two-dimensional Hamiltonian system of ordinary differential equations (whether polynomial or analytic) is determinable in a purely algebraic manner, i.e., by using no integration.  相似文献   

10.
《Physics letters. A》1987,125(5):228-230
Some considerations about propagation equations for classical massive test particles with spins 1/2, 1 and 3/2 in a space-time with torsion suggest that massive fields with spin are tensor (spinor) valued 0-forms, whereas massless fields with spin ⩾ 1 are tensor (spinor) valued 1-forms.  相似文献   

11.
Nisha Goyal  R. K. Gupta 《中国物理 B》2012,21(9):90401-090401
The symmetry reduction method based on the Fréchet derivative of differential operators is applied to investigate symmetries of the Einstein-Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear partial differential equations of the second order. The technique yields invariant transformations that reduce the given system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced systems are further studied to obtain the exact solutions.  相似文献   

12.
The symmetry reduction method based on the Fr′echet derivative of differential operators is applied to investigate symmetries of the Einstein-Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear partial differential equations of the second order. The technique yields invariant transformations that reduce the given system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced systems are further studied to obtain the exact solutions.  相似文献   

13.
Generic interactions characteristic of so-called nonrenormalizable scalar and spinor quantum field theories are interpreted as discontinuous perturbations in the sense that the theory does not return to the unperturbed theory as the interaction coupling vanishes. To proceed beyond this interpretation specific alternatives to conventional quantization schemes are developed. Solution of a highly idealized (independent-value), nonrenormalizable scalar field theory automatically entails a formally scale-invariant measure (rather than the conventional translation-invariant measure) in a functional integral formulation, and the success of this measure suggests its use more generally. Such a measure can be motivated (by augmented field theory) on heuristic grounds as taking into account the partial hardcore nature of the interaction responsible for its behavior as a discontinuous perturbation. This modification leads generally to what we call scale-covariant quantization, which can be formulated in terms of unconventional functional differential equations, coupled Green's function equations and operator field equations. Use of affine fields establishes equivalence of these various approaches and enables analogous coupled Green's function equations for models with fermions to be most easily obtained. The basic concepts of this program are illustrated with elementary wave-mechanical examples.  相似文献   

14.
The evolution of a homogeneous multicomponent cosmological model with interacting spinor, vector, and scalar fields in the presence of dark energy described by the ideal liquid with the corresponding state equation is considered. The source of the vector and spinor fields is the kinetic energy of the inflation (scalar) field that is modeled by introduction of Lagrangians for the spinor and vector fields interacting with the scalar field through the squared gradient. A system of the dynamic Einstein–Proca–Klein–Fock and ideal liquid equations in the presence of interaction of the cosmological model components is solved. The role of individual components in the process of model evolution is elucidated.  相似文献   

15.
 为研究超高速弹丸碰撞靶板产生等离子体诱生的磁场,引用已有关于激光产生等离子体的磁场理论,结合麦克斯韦方程和法拉第电磁感应定律得到了超高速碰撞产生等离子体诱生磁场的1维理论模型。基于已有关于超高速正碰撞产生半球状等离子体云诱生磁场的偏微分方程,建立了柱坐标系下超高速斜碰撞产生部分椭球状等离子体云的偏微分方程。通过感应线圈进行了磁感应强度的实验测量,实验结果与模型预言表明,该模型可近似地描述超高速斜碰撞产生等离子体诱生的磁感应强度。  相似文献   

16.
A system of minimally coupled nonlinear spinor and scalar fields within the scope of a Bianchi type-I (BI) cosmological model in the presence of a perfect fluid and a cosmological constant (Λ term) is studied, and solutions to the corresponding field equations are obtained. The problem of initial singularity and the asymptotical isotropization process of the Universe are thoroughly studied. The effect of the Λ term on the character of evolution is analyzed. It is shown that some special choice of spinor field nonlinearity generates a regular solution, but the absence of singularity results in violating the dominant energy condition in the Hawking-Penrose theorem. It is also shown that a positive Λ, which denotes an additional gravitational force in our case, gives rise to an oscillatory or a non-periodic mode of expansion of the Universe depending on the choice of problem parameter. The regular oscillatory mode of expansion violets the dominant energy condition if the spinor field nonlinearity occurs as a result of self-action, whereas, in the case of a linear spinor field or nonlinear one that occurs due to interaction with a scalar field, the dominant condition remains unbroken. A system with time-varying gravitational (G) and cosmological (Λ) constants is also studied to some extent. The introduction of magneto-fluid in the system generates nonhomogeneity in the energy-momentum tensor and can be exactly solved only under some additional condition. Though in this case, we indeed deal with all four known fields, i.e., spinor, scalar, electromagnetic, and gravitational, the over-all picture of evolution remains unchanged.  相似文献   

17.
We show how to write the Dirac and the generalized Maxwell equations (including monopoles) in the Clifford and spin-Clifford bundles (of differential forms) over space-time (either of signaturep=1,q=3 orp=3,q=1). In our approach Dirac and Maxwell fields are represented by objects of the same mathematical nature and the Dirac and Maxwell equations can then be directly compared. We show also that all presentations of the Maxwell equations in (matrix) Dirac-like spinor form appearing in the literature can be obtained by choosing particular global idempotents in the bundles referred to above. We investigate also the transformation laws under the action of the Lorentz group of Dirac and Maxwell fields (defined as algebraic spinor sections of the Clifford or spin-Clifford bundles), clearing up several misunderstandings and misconceptions found in the literature. Among the many new results, we exhibit a factorization of the Maxwell field into two-component spinor fields (Weyl spinors), which is important.  相似文献   

18.
To get a synthesis of causal faster-than-light effects and signals that do not propagate faster than light by using local, covariant, linear equations of motion, we propose the following hypothesis. Free fields that propagate signals according to the Klein-Gordon, Dirac, Proca or Maxwell equations, are actually describing only smoothed-out, average properties of underlying causal transport processes of point like entities with arbitrary four-momenta, the states of which are described by a scalar, spinor or four-vector field that satisfies a local, covariant, linear transport equation. An example of such a linear, causal, covariant transport process is shown to display causal faster-than-light effects, to propagate signals not faster than light, and to contain the Klein-Gordon equation as a limiting case. An analogous transport model displays causal, four-vector, faster-than-light effects, and also distinctive four-vector, long-range and short-range effects that do not propagate faster than light.  相似文献   

19.
王勇  梅凤翔  曹会英  郭永新 《物理学报》2018,67(3):34501-034501
和Hamilton-Jacobi方法类似,Vujanovi?场方法把求解常微分方程组特解的问题转化为寻找一个一阶拟线性偏微分方程(基本偏微分方程)完全解的问题,但Vujanovi?场方法依赖于求出基本偏微分方程的完全解,而这通常是困难的,这就极大地限制了场方法的应用.本文将求解常微分方程组特解的Vujanovi?场方法改进为寻找动力学系统运动方程第一积分的场方法,并将这种方法应用于一阶线性非完整约束系统Riemann-Cartan位形空间运动方程的积分问题中.改进后的场方法指出,只要找到基本偏微分方程的包含m(m≤ n,n为基本偏微分方程中自变量的数目)个任意常数的解,就可以由此找到系统m个第一积分.特殊情况下,如果能够求出基本偏微分方程的完全解(完全解是m=n时的特例),那么就可以由此找到≤系统全部第一积分,从而完全确定系统的运动.Vujanovi?场方法等价于这种特殊情况.  相似文献   

20.
A formulation of the ECSK (Einstein-Cartan-Sciama-Kibble) theory with a Dirac spinor is given in terms of differential forms with values in exterior vector bundles associated with a fixed principalSL(2, )-bundle over a 4-manifold. In particular, tetrad fields are represented as soldering forms. In this setting, both the scalar curvature (Einstein-Hilbert) action density and the Dirac action density are well-defined polynomial functions of the soldering form and an independentSL(2,)-connection form. Thus, these densities are defined even where the tetrad field is degenerate (e.g. when fluctuations in the gravitational field are large). A careful analysis of the initial-value problem (in terms of an evolving triad field, SU(2)-connection, second-fundamental form and spinor field) reveals a first-order hyperbolic system of 27 evolution equations (not including the 8 evolution equations for the Dirac spinor) and 16 constraints. There are 10 conservation equations (due to local Poincaré invariance) which team up with some of the evolution equations to guarantee that the 16 constraints are preserved under the evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号