首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In a previous article the authors introduced a Lagrange multiplier based fictitious domain method. Their goal in the present article is to apply a generalization of the above method to: (i) the numerical simulation of the motion of neutrally buoyant particles in a three-dimensional Poiseuille flow; (ii) study – via direct numerical simulations – the migration of neutrally buoyant balls in the tube Poiseuille flow of an incompressible Newtonian viscous fluid. Simulations made with one and several particles show that, as expected, the Segré–Silberberg effect takes place. To cite this article: T.-W. Pan, R. Glowinski, C. R. Mecanique 333 (2005).  相似文献   

2.
Gas–solid flow in the riser of a dense fluidized bed using Geldart B particles (sand), at high gas velocity (7.6–15.5 m/s) and with comparatively high solid flux (140–333.8 kg/m2 s), was investigated experimentally and simulated by computational fluid dynamics (CFD), both two- and three-dimensional and using the Gidaspow, O’Brien-Syamlal, Koch-Hill-Ladd and EMMS drag models. The results predicted by EMMS drag model showed the best agreement with experimental results. Calculated axial solids hold-up profiles, in particular, are well consistent with experimental data. The flow structure in the riser was well represented by the CFD results, which also indicated the cause of cluster formation. Complex hydrodynamical behaviors of particle cluster were observed. The relative motion between gas and solid phases and axial heterogeneity in the three subzones of the riser were also investigated, and were found to be consistent with predicted flow structure. The model could well depict the difference between the two exit configurations used, viz., semi-bend smooth exit and T-shaped abrupt exit. The numerical results indicate that the proposed EMMS method gives better agreement with the experimental results as compared with the Gidaspow, O’Brien-Syamlal, Koch-Hill-Ladd models. As a result, the proposed drag force model can be used as an efficient approach for the dense gas–solid two-phase flow.  相似文献   

3.
The excitation of a packet of near-subharmonic secondary perturbations by the periodic blowing-suction of fluid through a small wall section at the initial instant is studied. The packet is treated as a very simple model of a turbulent spot. The investigation is carried out for plane Poiseuille flow and a Blasius boundary layer. The results obtained are compared with the data of experiments and direct numerical simulation of turbulent spot flow.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 51–61, November–December, 1995.  相似文献   

4.
Effects of microchannel geometry on pulsed flow mixing   总被引:1,自引:0,他引:1  
Although the mixing of reagents is often crucial in many microfluidic devices, good mixing in these laminar, low Reynolds number, flows remains a challenge. It was shown in Refs. [Glasgow, I., Aubry, N., 2003. Lab on a Chip 3, p. 114; Glasgow, I., Batton, J., Aubry, N., 2004. Lab on a Chip 4, p. 558] that pulsing can induce mixing at the confluence of two inlet microchannels in an efficient manner. In this paper, we show that this mixing is affected by both the geometry of the confluence and the inclusion of features in the channels, which induce secondary flow. More specifically, we study mixing in 200 μm wide by 120 μm deep channels, at flow rates from 48 nl s−1 to 4.8 μl s−1, corresponding to Reynolds numbers of 0.3–30. For the parameter values studied, the pulsed flow technique is more effective at mixing than the secondary flow induced by the channel geometry features, and combining both methods leads to even better mixing. In addition, pulsing the reagents such that they pass multiple times through the spatial features, which induce secondary flow leads to mixing over shorter distances.  相似文献   

5.
Two-phase air–water flows in a microscale fractal-like flow network were experimentally studied and results were compared to predictions from existing macroscale void fraction correlations and flow regime maps. Void fraction was assessed using (1) two-dimensional analysis of high-speed images (direct method) and (2) experimentally determined using gas velocities (indirect method). Fixed downstream-to-upstream length and width ratios of 1.4 and 0.71, respectively, characterize the five-level flow network. Channels were fabricated in a 38 mm diameter silicon disk, 250 μm deep disk with a terminal channel width of 100 μm. A Pyrex top allowed for flow visualization. Superficial air and water velocities through the various branch levels were varied from 0.007 m/s to 1.8 m/s and from 0.05 m/s to 0.42 m/s, respectively. Two-phase flow regime maps were generated for each level of the flow network and are well predicted by the Taitel and Dukler model. Void fraction assessed using the indirect method shows very good agreement with the homogeneous void fraction model for all branch levels for the given range of flow conditions. Void fraction determined directly varies considerably from that assessed indirectly, showing better agreement with the void fraction correlation of Zivi.  相似文献   

6.
Experiments are conducted with a perfluorinated dielectric fluid, Fluorinert FC-77, to identify the critical geometric parameters that affect flow boiling heat transfer and flow patterns in microchannels. In recent work by the authors (Harirchian and Garimella, 2009), seven different silicon test pieces containing parallel microchannels of widths ranging from 100 to 5850 μm, all with a depth of 400 μm were tested and it was shown that for a fixed channel depth, the heat transfer coefficient was independent of channel width for microchannels of widths 400 μm and larger, with the flow regimes in these microchannels being similar; nucleate boiling was also found to be dominant over a wide range of heat fluxes. In the present study, experiments are performed with five additional microchannel test pieces with channel depths of 100 and 250 μm and widths ranging from 100 to 1000 μm. Flow visualizations are performed using a high-speed digital video camera to determine the flow regimes, with simultaneous local measurements of the heat transfer coefficient and pressure drop. The aim of the present study is to investigate as independent parameters the channel width and depth as well as the aspect ratio and cross-sectional area on boiling heat transfer in microchannels, based on an expanded database of experimental results. The flow visualizations and heat transfer results show that the channel cross-sectional area is the important governing parameter determining boiling mechanisms and heat transfer in microchannels. For channels with cross-sectional area exceeding a specific value, nucleate boiling is the dominant mechanism and the boiling heat transfer coefficient is independent of channel dimensions; below this threshold value of cross-sectional area, vapor confinement is observed in all channels at all heat fluxes, and the heat transfer rate increases as the microchannel cross-sectional area decreases before premature dryout occurs due to channel confinement.  相似文献   

7.
Rheological equations of state are obtained for weak solutions of polymers as rigid ellipsoidal macromolecules, taking into account the rotational Brownian motion of the macromolecules, their energy, and the external force fields (electric and magnetic). As an example the effect of the inertia of the macromolecules on the rheological behavior of the solutions is examined.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 125–129, March–April, 1972.  相似文献   

8.
The Krylov-Bogolyubov numerical method is used to solve integral transfer equations obtained from the kinetic equation with the BHC (Bhatnagar—Cross—Krook) model of the collision operator. The velocity profiles and the thermal-creep flows and Poiseuille flow are calculated in different modes of flow under conditions of incomplete accommodation of the tangential momentum of molecules at the wall.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 143–150, November–December, 1978.  相似文献   

9.
Results of physical and numerical experiments on investigating the effect of the depth of immersion of a two-dimensional obstacle with a square cross section into a developed turbulent boundary layer on the length of the separated flow region are presented. The numerical simulation is based on solving averaged Navier–Stokes equations with the use of the k– model of turbulence. The near-wall flow is visualized in the experiments, and the fields of mean and fluctuating velocities are measured. Flow regions where the results of numerical simulation agree with experimental data are determined. It is shown that the length of the recirculation flow region in the near wake increases with decreasing depth of immersion of the two-dimensional obstacle into the turbulent boundary layer.  相似文献   

10.
The mass concentration and size distribution of aerosols in Tokaimura were investigated using a high-volume and a low-volume Andersen sampler. A difference was found using the two samplers: the concentration of total aerosols determined with the high-volume sampler is smaller than that of the low-volume sampler by 70-90% throughout the year. Compared to the high-volume sampler, low-volume sampler gave lower concentration for aerosols 〉7 μm, higher concentration for aerosols of 3.3-7.0 μm and 〈 1.1 μm, though similar results for aerosols of 1.1-3.3 μm. The low-volume sampler was found to have better separation efficiency and higher accuracy.  相似文献   

11.
The present study is developed within the framework of marine structure design operating in transient regimes. It deals with an experimental and numerical investigation of the time–space distribution of the wall-pressure field on a NACA66 hydrofoil undergoing a transient up-and-down pitching motion from 0° to 15° at four pitching velocities and a Reynolds number Re = 0.75 × 106. The experimental investigation is performed using an array of wall-pressure transducers located on the suction side and by means of time–frequency analysis and Empirical Modal Decomposition method. The numerical study is conducted for the same flow conditions. It is based on a 2D RANS code including mesh reconstruction and an ALE formulation in order to take into account the foil rotation and the tunnel walls. Due to the moderate Reynolds number, a laminar to turbulent transition model was also activated. For the operating flow conditions of the study, experimental and numerical flow analysis revealed that the flow experiences complex boundary layer events as leading-edge laminar separation bubble, laminar to turbulent transition, trailing-edge separation and flow detachment at stall. Although the flow is relatively complex, the calculated wall pressure shows a quite good agreement with the experiment provided that the mesh resolution and the temporal discretization are carefully selected depending on the pitching velocity. It is particularly shown that the general trend of the wall pressure (low frequency) is rather well predicted for the four pitching velocities with for instance a net inflection of the wall pressure when transition occurs. The inflection zone is reduced as the pitching velocity increases and tends to disappear for the highest pitching velocity. Conversely, high frequency wall-pressure fluctuations observed experimentally are not captured by the RANS model. Based on the good agreement with experiment, the model is then used to investigate the effects of the pitching velocity on boundary layer events and on hydrodynamic loadings. It is shown that increasing the pitching velocity tends to delay the laminar-to-turbulence transition and even to suppress it for the highest pitching velocity during the pitch-up motion. It induces also an increase of the stall angle (compared to quasi-static one) and an increase of the hysteresis effect during pitch-down motion resulting to a significant increase of the hydrodynamic loading.  相似文献   

12.
The flow in turbomachines is currently calculated either on the basis of a single successive solution of an axisymmetric problem (see, for example, [1-A]) and the problem of flow past cascades of blades in a layer of variable thickness [1, 5], or by solution of a quasi-three-dimensional problem [6–8], or on the basis of three-dimensional models of the motion [9–11]. In this paper, we derive equations of a three-dimensional model of the flow of an ideal incompressible fluid for an arbitrary curvilinear system of coordinates based on averaging the equations of motion in the Gromek–Lamb form in the azimuthal direction; the pulsation terms are taken into account in the equations of the quasi-three-dimensional motion. An algorithm for numerical solution of the problem is described. The results of calculations are given and compared with experimental data for flows in the blade passages of an axial pump and a rotating-blade turbine. The obtained results are analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 69–76, March–April, 1991.I thank A. I. Kuzin and A. V. Gol'din for supplying the results of the experimental investigations.  相似文献   

13.
An experimental study was made on convective heat and mass transfer from a horizontal heated cylinder in a downward flow of air-water mist at a blockage ratio of 0.4. The measured local heat transfer coefficients agree fairly well with the authors' numerical solutions obtained previously for the front surface of a cylinder over the ranges mass flow ratio 0–4.5×10−2, a temperature difference between the cylinder and air 10–43 K, gas Reynolds number (7.9–23)×103, Rosin-Rammler size parameter 105–168 μm, and dispersion parameter 3.4–3.7. Heat transfer augmentation, two-pahse to single-phase of greater than 19 was attained at the forward stagnation point. For heat transfer in the rear part of the cylinder, an empirical formula is derived by taking into account the dimensionless governing variables, that is, coolant-feed and evaporation parameters.  相似文献   

14.
This investigation examines non-Newtonian flow mechanisms and heat transfer characteristics for a micro spinneret. The working fluid, Polyethylene terephthalate (PET), is the raw material of micro fiber, and a large-scale experimental test model was designed to visualize the complex viscous flow system in the micro spinneret. To visualize the complex convective flow system, an experimental test model was constructed, using glycerin instead of PET. The related parameters of PET were compared with those of glycerin. The power law correlates the shear strain with PET viscosity at various temperatures. The pressure distribution along the flow direction was measured and the flow pattern was visualized using polyethylene (PE) powder of 20–40 m. Similar configurations were calculated for micro spinneret physical parameters to determine the thermal flow characteristics. The Reynolds number in the test model is not less than 10–2. In the non-Newtonian PET working fluid of practical micro spinneret, flows with Re = 104 to 10–2 are in the same low Reynolds number flow regime. Therefore, the working fluid is expected to have the same flow characteristic. A numerical solution covering the range of approximately Re = 10–4 at PET confirms that the flow characteristics of glycerin are constant for Re = 1.228 × 10–2. The Peclet number in the test model can be adjusted to a value similar to that in the micro spinneret. The flow visualization was compared with that of the numerical solution, and the friction factor and Nusselt number in the micro spinneret were analyzed. Finally, numerical results and friction factor with various exit angles of micro spinneret in a triangular zone flow system were also summarized.  相似文献   

15.
A lattice Boltzmann model is developed to simulate the one-dimensional (1D) unsteady state concentration profiles, including breakthrough curves, in a fixed tubular bed of non-porous adsorbent particles. The lattice model solves the 1D time dependent convection–diffusion–reaction equation for an ideal binary gaseous mixture, with solute concentrations at parts per million levels. The model developed in this study is also able to explain the experimental adsortption/desorption data of organic vapours (toluene) on silica gel under varying conditions of temperature, concentrations and flowrates. Additionally, the programming code written for simulating the adsorption breakthrough is modified with minimum changes to successfully simulate a few flow problems, such as Poiseuille flow, Couette flow, and axial dispersion in a tube. The present study provides an alternative numerical approach to solving such types of mass transfer related problems.  相似文献   

16.
The stability of plane two-layer Couette and Poiseuille flows, where the lower layer consists of a Grad-model fluid and the upper layer is a viscous Newtonian fluid, is investigated. The disturbances are assumed to be of the long-wave type, and the analysis involves expansion in wave numbers and is limited by two approximations. Numerical calculations are made for some values of the parameters. The calculations indicate that the rotational energy of the fluid in the lower layer has a destabilizing effect on the flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 125–127, July–August, 1978.  相似文献   

17.
The stability of two-dimensional dispersed Poiseuille flow is analyzed within the framework of the linear theory. A numerical solution of the corresponding Orr-Sommerfeld equation is constructed. The effect of the particle mass concentration, dimensions, and relaxation time on the flow stability is considered.Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 79–85, September–October, 1995.  相似文献   

18.
The spatial stability of two dimensional, steady channel flow is investigated in the downstream entry zone for both exponentially and algebraically growing disturbances. A model based on previous work is presented for the base flow which represents a small deformation of plane Poiseuille flow. The base flow evolution towards the fully developed state comes from the experimental and theoretical study of M. Asai and J.M. Floryan [M. Asai, J.M. Floryan, Certain aspects of channel entrance flow, Phys. Fluids 16 (2004) 1160–1163]. This flow is found to be more stable than the parabolic Poiseuille flow. The most destabilizing base flow defect is then calculated using a variational method. The compromise between the destabilizing effect of the defect, which diffuses downstream, and the instability growth is found to be insufficient to provoke transition in the downstream laminar flow.  相似文献   

19.
The viscous shock-layer model is used to examine relaxation of rotational degrees of freedom of molecular nitrogen in flow of a rarefied gas near the stagnation flow line around a sphere. It is shown that in the strongly smeared shock-wave region the rotational degrees of freedom can exhibit substantial nonequilibrium, leading to the increase of temperature and an increase of shock-layer thickness as compared with the equilibrium values. The influence of rotational relaxation on the shock-wave structure is discussed, and boundaries are found for the flow regions when rotational relaxation plays on important role,A comparison is made between the results of numerical calculations and experimentally obtained density profiles available in the literature near the stagnation line in flow of a rarefied gas over a sphere [1, 2]. Quite good agreement is obtained between the results of the calculation and experimental data over a wide range of Reynolds numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 172–175, July–August, 1977.  相似文献   

20.
The discrete element model (DEM) is a very promising modelling strategy for two-phase granular systems. However, owing to a lack of experimental measurements, validation of numerical simulations of two-phase granular systems is still an important issue. In this study, a small two-dimensional gas- fluidized bed was simulated using a discrete element model. The dimensions of the simulated bed were 44mm × 10mm × 120 mm and the fluidized particles had a diameter dp = 1.2 mm and density ρp = 1000 kg/m^3. The comparison between DEM simulations and experiments are performed on the basis of time-averaged voidage maps. The drag-law of Beetstra et al. [Beetstra, R., van der Hoef, M.A., & Kuipers,J. A. M. (2007b). Drag force of intermediate Reynolds number flow past mono- and bidispersed arrays of spheres. AIChE Journal, 53,489-501 ] seems to give the best results. The simulations are fairly insensitive to the coefficient of restitution and the coefficient of friction as long as some route of energy dissipation during particle-particle and particle-wall contact is provided. Changing the boundary condition of the gas phase at the side-walls from zero-slip to full-slip does not affect the simulation results. Care is to be taken that the cell sizes are chosen so that a reasonable number of particles can be found in a fluid cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号