首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman and surface-enhanced Raman scattering (SERS) technique are reliably used to compare relative intensity shifts and to investigate the adsorption geometry of protoberberine alkaloids on Ag nanoparticles. We report joint application of fluorescence and SERS spectroscopy to study the interaction between protoberberine alkaloids and human serum albumin (HSA). We propose SERS technique to improve the quenching interaction caused by protoberberine alkaloids which are used to be applied in recognition process of fluorescent drugs with large biomolecules. The fluorescence results show that the fluorescence intensity of HSA is significantly decreased in presence of protoberberine alkaloids. The SERS technique demonstrates obvious advantages over direct measurements in discriminating and identifying pharmaceutical molecules. By means of this method, we are able to detect important information concerning the orientation of protoberberine alkaloids when interacting with HSA. We also show that the nitrogen atom is free, but a benzene ring and two adjacent methoxy groups are involved in the spontaneously electrostatic inducement and subsequently binding with HSA.  相似文献   

2.
M Zhang  A Zhao  D Li  H Sun  D Wang  H Guo  Q Gao  Z Gan  W Tao 《The Analyst》2012,137(19):4584-4592
This paper reports the synthesis of a new class of NaLnF(4)-Ag (Ln = Nd, Sm, Eu, Tb, Ho) hybrid nanorice and its application as a surface-enhanced Raman scattering (SERS) substrate in chemical analyses. Rice-shaped NaLnF(4) nanoparticles as templates are prepared by a modified hydrothermal method. Then, the NaLnF(4) nanorice particles are decorated with Ag nanoparticles by magnetron sputtering method to form NaLnF(4)-Ag hybrid nanostructures. The high-density Ag nanogaps on NaLnF(4) can be obtained by the prolonging sputtering times or increasing the sputtering powers. These nanogaps can serve as Raman 'hot spots', leading to dramatic enhancement of the Raman signal. The NaLnF(4)-Ag hybrid nanorice is found to be robust and is an efficient SERS substrate for the vibrational spectroscopic characterization of molecular adsorbates; the Raman enhancement factor of Rhodamine 6G (R6G) absorbed on NaLnF(4)-Ag nanorice is estimated to be about 10(13). Since the produced NaLnF(4)-Ag hybrid nanorice particles are firmly fastened on a silicon wafer, they can serve as universal SERS substrates to detect target analytes. We also evaluate their SERS performances using 4-mercaptopyridine (Mpy), and 4-mercaptobenzoic acid (MBA) molecules, and the detection limit for Mpy and MBA is as low as 10(-12) M and 10(-10) M, respectively, which meets the requirements of the ultratrace detection of analytes. This simple and highly efficient approach to the large-scale synthesis of NaLnF(4)-Ag nanorice with high SERS activity and sensitivity makes it a perfect choice for practical SERS detection applications.  相似文献   

3.
Surface-enhanced Raman scattering(SERS) is a molecular specific spectroscopic technique that amplifies the Raman signal of absorbed molecules for up to 1010times. Over the past decades, SERS substrates experienced rapid growth, resulting in excellent development for SERS analysis. Because the surface plasmonic resonance coupling between individual materials can form a "hotspot" region to maximize the Raman signal, among many substrate construction strategies, self-assembly attracts more attention in constructing superstructures with strong, uniform and stable SERS activity. In addition, a number of plasmon-free nanomaterials with appropriate superstructures samely show enhanced SERS activity, which is primarily attributed to the formation of the optical resonator. This review aims to provide a scientific synopsis on the progress of self-assembled superstructures for SERS and ignite new dis˗ coveries in the SERS platform, as well as SERS applications in various fields.  相似文献   

4.
This perspective gives an overview of recent developments in surface-enhanced Raman scattering (SERS) for biosensing. We focus this review on SERS papers published in the last 10 years and to specific applications of detecting biological analytes. Both intrinsic and extrinsic SERS biosensing schemes have been employed to detect and identify small molecules, nucleic acids, lipids, peptides, and proteins, as well as for in vivo and cellular sensing. Current SERS substrate technologies along with a series of advancements in surface chemistry, sample preparation, intrinsic/extrinsic signal transduction schemes, and tip-enhanced Raman spectroscopy are discussed. The progress covered herein shows great promise for widespread adoption of SERS biosensing.  相似文献   

5.
为简单有效地制备高活性表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy,SERS)基底。本文采用静电纺丝聚乙烯醇(PVA)/聚丙烯酸(PAA)纳米纤维为支撑材料,通过直接浸泡的方法,利用金纳米棒与电纺纤维之间的静电力,使纳米棒在纤维表面自组装,得到了性能优异的SERS基底。通过透射电子显微镜、扫描电子显微镜对金纳米棒以及不同状态下的电纺纤维的形貌进行表征,结果表明,金纳米棒均匀且密集地负载在纤维表面。通过设置不同的浸泡时间确定了金纳米棒组装平衡的时间为12 h,并通过调控纺丝时间和金纳米棒的浓度发现随着纺丝时间和金纳米棒浓度的增加,复合纤维膜SERS增强效果随之提升。该复合纤维膜具有优异的SERS均匀性,并且能够检测到浓度低至10~(-10)mol/L的4-氨基苯硫酚的存在。  相似文献   

6.
In this paper, well-aligned Au-decorated TiO(2) nanotube arrays with high surface-enhanced Raman scattering (SERS) enhancement were prepared using a facile in situ reduction and controlled growth approach. The gold nanoparticles are well-dispersed and assembled on the mouth surface and the inside of the TiO(2) nanotubes without clogging. The structure and optical properties of the Au-decorated TiO(2) nanotube arrays have been characterized. The Au-decorated TiO(2) nanotube arrays were employed as SERS-active substrates, which exhibit good performance due to long-range coupling between Au nanoparticles, and TiO(2)-assisted enhanced charge-transfer from Au to Rh6G. The SERS activity of the substrates strongly depends on the crystallite size and level of aggregation. The substrates display significant fluorescence quenching ability and uniform SERS responses throughout the whole surface area. Particularly, good recyclability is shown. The photocatalytic property of Au-decorated TiO(2) nanotube array was exploited to recycle the substrate through UV light photocatalytic purification. The experimental results showed that the substrate is featured by high reproducibility and can be used as a highly efficient SERS substrate for multiple detection of different chemical and biological molecules.  相似文献   

7.
Active surface-enhanced Raman scattering (SERS) silver nanoparticles substrate was prepared by multiple depositions of Ag nanoparticles on glass slides. The substrate is based on five depositions of Ag nanoparticles on 3-aminopropyl-trimetoxisilane (APTMS) modified glass slides, using APTMS sol–gel as linker molecules between silver layers. The SERS performance of the substrate was investigated using 4-aminobenzenethiol (4-ABT) as Raman probe molecule. The spectral analyses reveal a 4-ABT Raman signal enhancement of band intensities, which allow the detection of this compound in different solutions. The average SERS intensity decreases significantly in 4-ABT diluted solutions (from 10−4 to 10−6 mol L−1), but the compound may still be detected with high signal/noise ratio. The obtained results demonstrate that the Ag nanoparticles sensor has a great potential as SERS substrate.  相似文献   

8.
Graphene shells with a controllable number of layers were directly synthesized on Cu nanoparticles (CuNPs) by chemical vapor deposition (CVD) to fabricate a graphene‐encapsulated CuNPs (G/CuNPs) hybrid system for surface‐enhanced Raman scattering (SERS). The enhanced Raman spectra of adenosine and rhodamine 6G (R6G) showed that the G/CuNPs hybrid system can strongly suppress background fluorescence and increase signal‐to‐noise ratio. In four different types of SERS systems, the G/CuNPs hybrid system exhibits more efficient SERS than a transferred graphene/CuNPs hybrid system and pure CuNPs and graphene substrates. The minimum detectable concentrations of adenosine and R6G by the G/CuNPs hybrid system can be as low as 10?8 and 10?10 M , respectively. The excellent linear relationship between Raman intensity and analyte concentration can be used for molecular detection. The graphene shell can also effectively prevent surface oxidation of Cu nanoparticles after exposure to ambient air and thus endow the hybrid system with a long lifetime. This work provides a basis for the fabrication of novel SERS substrates.  相似文献   

9.
利用种子介导的软模板生长方法制备了金纳米线(Au NWs)阵列, 通过调节生长温度控制Au NWs阵列的形貌, 最后在经硼氢化钠(NaBH4)清洗过的Au NWs阵列上化学沉积银纳米颗粒(Ag NPs), 制得银/金纳米线(Ag/Au NWs)阵列作为表面增强拉曼散射(SERS)基底. 选用罗丹明6G(R6G)作为拉曼探针分子测定了Ag/Au NWs阵列的SERS性能. 结果表明, Ag/Au NWs阵列作为SERS基底具有高灵敏度、 优异的信号均匀性和良好的稳定性. 使用Ag/Au NWs阵列对孔雀石绿(MG)检测的检出限可低至1×10-8 mol/L, 线性范围为 1×10-8~1×10-4 mol/L. NaBH4可以在不影响SERS性能的情况下去除Ag/Au NWs阵列上吸附的分子, 使得 SERS基底可以重复使用. 使用Ag/Au NWs阵列对湖水中的MG进行检测, 得到了可靠的回收率, 证明Ag/Au NWs 阵列在检测环境水体中的孔雀石绿上具有应用潜力.  相似文献   

10.
The in vitro diagnostics of cancer are not represented well yet, but the need for early-stage detection is undeniable. In recent decades, surface-enhanced Raman spectroscopy (SERS) has emerged as an efficient, adaptable, and unique technique for the detection of cancer molecules in their early stages. Herein, we demonstrate an opto-plasmonic hybrid structure for sensitive detection of the prostate cancer biomarker sarcosine using silica nanospheres coated silver nano-islands as a facile and efficient SERS active substrate. The SERS active platform has been developed via thin (5–15 nm) deposition of silver islands using a simple and cost-effective Radio Frequency (RF) sputtering technique followed by the synthesis and decoration of silica nanospheres (~500 nm) synthesized via Stober’s method. It is anticipated that the coupling of Whispering Gallery Modes and photonic nano-jets in SiO2 nanospheres induce Localized Surface Plasmon Resonance (LSPR) in Ag nano-islands, which is responsible for the SERS enhancement. The as-fabricated SERS active platform shows a linear response in the physiological range (10 nM to 100 μM) and an extremely low limit of detection (LOD) of 1.76 nM with a correlation coefficient of 0.98 and enhancement factor ~2 × 107. The findings suggest that our fabricated SERS platform could be potentially used for the rapid detection of bio-chemical traces with high sensitivity.  相似文献   

11.
用一种廉价的电解方法制备了纳米银膜,并详细研究了在这种银膜上的表面增强拉曼散射效果.结晶紫为本实验的检测性分子.通过实验发现,这种银膜用便携式拉曼光谱仪测试并计算出的表面增强拉曼散射的增强因子为603,并对结晶紫的最小检出限为0.1nmol/L.  相似文献   

12.
制备了一种灵敏度高、 稳定性强的双金属双硅层核-壳结构纳米材料Au@SiO2@Ag@SiO2. 由于双金属之间的硅层促进了远程等离子体的激发转移, 使该纳米粒子具有良好的表面增强拉曼散射(SERS)的特性及优异的稳定性. 利用这种SERS活性材料能直接检测出人体尿液的主要成分, 且该材料呈现出对低浓度(10-6 mol/L)葡萄糖的无标记高效检出能力. 此外, 还实现了人工尿液中等浓度(10-3 mol/L)葡萄糖和尿素分子的同时检测, 以及实际尿液中10-3 mol/L葡萄糖的检测. Au@SiO2@Ag@SiO2纳米粒子具有在多种生物分子存在时快速检测葡萄糖的实际应用潜力.  相似文献   

13.
Surface-enhanced Raman scattering (SERS) offers a tremendous multiplexing capacity for the selective detection of biomolecules in targeted research. SERS labels comprising self-assembled monolayers (SAMs) of Raman reporter molecules on the surface of metal nanoparticles are sensitive and robust probes. Advantages of a SAM include maximum sensitivity, minimal unwanted co-adsorption of molecules from the surroundings, and reproducible SERS spectra with only few dominant Raman bands—all of these independent of a particular SERS substrate. We demonstrate experimentally how to increase the multiplexing capacity of SERS labels by using mixed SAMs with up to three different Raman reporter molecules on the surface of the metal colloid. Type and stoichiometry of a particular Raman label in a multi-component SAM are additional parameters compared with one-component SAMs. All one-, two-, and three-component SAMs on gold nanospheres can be easily discriminated, either by their original SERS spectra or the corresponding bar codes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
We report a new simple method to fabricate a highly active SERS substrate consisting of poly‐m‐phenylenediamine/polyacrylonitrile (PmPD/PAN) decorated with Ag nanoplates. The formation mechanism of Ag nanoplates is investigated. The synthetic process of the Ag nanoplate‐decorated PmPD/PAN (Ag nanoplates@PmPD/PAN) nanofiber mats consists of the assembly of Ag nanoparticles on the surface of PmPD/PAN nanofibers as crystal nuclei followed by in situ growth of Ag nanoparticles exclusively into nanoplates. Both the reducibility of the polymer and the concentration of AgNO3 are found to play important roles in the formation and the density of Ag nanoplates. The optimized Ag nanoplates@PmPD/PAN nanofiber mats exhibit excellent activity and reproducibility in surface‐enhanced Raman scattering (SERS) detection of 4‐mercaptobenzoic acid (4‐MBA) with a detection limit of 10?10 m , making the Ag nanoplates@PmPD/PAN nanofiber mats a promising substrate for SERS detection of chemical molecules. In addition, this work also provides a design and fabrication process for a 3D SERS substrate made of a reducible polymer with noble metals.  相似文献   

15.
将阳极氧化与光还原法结合,在TiO_(2)纳米管阵列(TiO_(2)NTAs)表面修饰Ag纳米粒子,获得一种均匀有序、稳定性高且可循环的TiO_(2)NTAs/Ag活性基底。采用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-Vis DRS)、表面增强拉曼散射光谱(SERS)和扫描电子显微镜(SEM)等手段对TiO_(2)NTAs/Ag的组成和结构进行了表征。进一步研究了该TiO_(2)-NTAs/Ag阵列对盐酸四环素(TC-HCl)的SERS响应,结果表明,该复合基底对TC-HCl具有较高的检测灵敏度,在水中检测限可达1×10^(−14) mol/L,而TiO_(2)-NTAs与Ag之间的协同效应对其检测性能的提高起着关键作用。此外,TiO_(2)NTAs/Ag基底在光照下对TC-HCl展示了优异的降解活性,且至少可循环使用8次。表明该TiO_(2)NTAs/Ag基底在环境中有机污染物的SERS检测和降解领域具有潜在的应用前景。  相似文献   

16.
The use of surface-enhanced Raman spectroscopy (SERS) to determine spectral markers for the diagnosis of heparin-induced thrombocytopenia (HIT), a difficult-to-diagnose immune-related complication that often leads to limb ischemia and thromboembolism, is proposed. The ability to produce distinct molecular signatures without the addition of labels enables unbiased inquiry and makes SERS an attractive complementary diagnostic tool. A capillary-tube-derived SERS platform offers ultrasensitive, label-free measurement as well as efficient handling of blood serum samples. This shows excellent reproducibility, long-term stability and provides an alternative diagnostic rubric for the determination of HIT by leveraging machine-learning-based classification of the spectroscopic data. We envision that a portable Raman instrument could be combined with the capillary-tube-based SERS analytical tool for diagnosis of HIT in the clinical laboratory, without perturbing the existing diagnostic workflow.  相似文献   

17.
Liu X  Huan S  Bu Y  Shen G  Yu R 《Talanta》2008,75(3):797-803
A novel immunoassay based on surface-enhanced Raman scattering (SERS) has been developed. The method exploits the SERS-derived signal from reporter molecules (crystal violet, CV) encapsulated in antibody-modified liposome particles. The antigen is firstly captured by the primary antibody immobilized in microwell plates and then sandwiched by secondary antibody-modified liposome. The CV molecules are released from the liposome and transferred to specially designed substrate of gold nanosphere arrays with sub-10-nm gaps. The concentration of the antigen is indirectly read out by the SERS intensity of the CVs. The substrate used could substantially improve the sensitivity and reproducibility of SERS measurement. The SERS intensity responses are linearly correlated to logarithm of antigen concentration in the range of 1.0 x 10(-8) to 1.0 x 10(-4) gm L(-1) with a detection limit of 8 ng mL(-1). To our knowledge, this is the first report describing liposome-mediated enhancement of the sensitivity in immunoassay based on surface-enhanced Raman scattering. Experimental results show that the proposed method illustrates a potential prospect of applications in immunoassay.  相似文献   

18.
We report on the joint application of fluorescence, ultraviolet-visible (UV-Vis) and Raman spectroscopy to the study of berberine with human serum albumin (HSA). We propose the surface-enhanced Raman scattering (SERS) technique to improve the understanding of the quenching interaction caused by berberine which could be applied in recognition process of fluorescent drugs with large biomolecules. The fluorescence and UV-Vis spectroscopic results show that the fluorescence intensity of HSA is significantly decreased in the presence of berberine, and the quenching mechanism is static. The SERS technique demonstrates clear advantages over direct measurements in physiological conditions. By means of this method, we are able to deduce important information concerning the binding property of berberine when interacting with HSA. We show the nitrogen atom is free but the dioxolane is involved in the spontaneously electrostatic inducement and subsequently hydrophobic binding.  相似文献   

19.
Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules, where the substrate plays a critical role in determining the detection performance. Herein, a silver nanocubes/polyelectrolyte/gold film sandwich structure was prepared as a reproducible, high-performance SERS substrate by the water/oil interfacial assembly method. In addition to the hot spots on the nanocubes surface, the edge-to-edge interspace of the Ag nanocubes led to marked enhancement of the SERS intensity, with a limit of detection of 10?11 mol/L and limit of quantitation of 10?10 mol/L for crystal violet. When rhodamine 6G and crystal violet were co-adsorbed on the Ag nanocube surfaces, the characteristic SERS peaks of the two molecules remained well resolved and separated, and the peak intensities varied with the respective concentration, which could be exploited for concurrent detection of dual molecules. Results from this work indicate that organized ensembles of Ag nanocubes can serve as effective SERS substrate can for sensitive analysis for complex molecular systems.  相似文献   

20.
钮洋  刘清海  杨娟  高东亮  秦校军  罗达  张振宇  李彦 《化学学报》2012,70(14):1533-1537
合成了碳纳米管和金纳米颗粒的复合物, 测量了水溶液相中复合物的表面增强拉曼光谱, 结果表明, 碳纳米管的巯基化修饰可以提高碳纳米管与金纳米颗粒复合的效率, 随着金纳米颗粒负载量的增加, 碳纳米管的拉曼信号逐渐增强. 加入己二胺分子可以减小金纳米颗粒之间的距离使表面增强效应更显著, 碳纳米管的拉曼光谱得到进一步的增强. 还可进一步在复合体系中加入对巯基苯胺和罗丹明B等小分子拉曼探针, 利用金纳米颗粒的表面增强效应, 这种多元复合体系有望作为多通道拉曼成像探针材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号