首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The decomposition of nitric oxide on small charged rhodium clusters Rh(n)(+/-) (6 < n < 30) has been investigated by Fourier transform ion cyclotron resonance mass spectrometry. For both cationic and anionic naked clusters, the rates of reaction with NO increase smoothly with cluster size in the range studied without the dramatic size-dependent fluctuations often associated with the reactions of transition-metal clusters. The cationic clusters react significantly faster than the anions and both exhibit rate constants exceeding collision rates calculated by average dipole orientation theory. Both the approximate magnitude and the trends in reactivity are modeled well by the surface charge capture model recently proposed by Kummerl?we and Beyer. All clusters studied here exhibit pseudo-first-order kinetics with no sign of biexponential kinetics often interpreted as evidence for multiple isomeric structures. Experiments involving prolonged exposure to NO have revealed interesting size-dependent trends in the mechanism and efficiency of NO decomposition: For most small clusters (n < 17), once two NO molecules are coadsorbed on a cluster, N(2) is evolved, generating the corresponding dioxide cluster. By analogy with experiments on extended surfaces, this observation is interpreted in terms of the dissociative adsorption of NO in the early stages of reaction, generating N atoms that are mobile on the surface of the cluster. For clusters where n < 13, this chemistry, which occurs independently of the cluster charge, repeats until a size-dependent, limiting oxygen coverage is achieved. Following this, NO is observed to adsorb on the oxide cluster without further N(2) evolution. For n = 14-16 no single end-point is observed and reaction products are based on a small range of oxide structures. By contrast, no evidence for N(2) production is observed for clusters n = 13 and n > 16, for which simple sequential NO adsorption dominates the chemistry. Interestingly, there is no evidence for the production of N(2)O or NO(2) on any of the clusters studied. A simple general mechanism is proposed that accounts for all observations. The detailed decomposition mechanisms for each cluster exhibit size (and, by implication, structure) dependent features with Rh(13)(+/-) particularly anomalous by comparison with neighboring clusters.  相似文献   

2.
The reactions of gas phase rhodium clusters, Rhn+/- (n<30), with nitrous oxide, N2O, have been investigated under single collision conditions by Fourier transform ion cyclotron resonance mass spectrometry. The only significant reaction observed is the sequential generation of oxides. Absolute rate constants for the reactions of all clusters have been determined and, in the case of the cationic clusters especially, they exhibit large fluctuations as a function of cluster size with local minima observed for n=5, 19, 28. Striking similarities are observed with the variation in rate constants for these clusters in reactions with small hydrocarbons (C. Adlhart and E. Uggerud, J. Chem. Phys., 2005, 123, 214709). Corresponding size effects are also observed but are less marked in the reactions of the anionic clusters. The reactions of several clusters exhibit marked deviations from simple pseudo-first-order kinetics suggesting the presence of multiple isomeric forms: Rh11+, Rh12+ and Rh8- exhibit characteristic biexponential decays which are interpreted in terms of the existence of different structural forms of the cluster which have markedly different reactivity. By contrast, Rh6+, Rh7+ and Rh8+ show rates which apparently increase with time, probably due to collisional activation. Thermalisation of the clusters prior to reaction by exposure to pulses of argon results in changes to the kinetics of these anomalous systems which can be explained in terms of collision induced isomerisation.  相似文献   

3.
The rate coefficients for the dehydrogenation of ethane, propane, and isobutane with cationic rhodium atoms Rh+ and clusters Rh+ n of up to 30 atoms were measured under single-collision conditions in a Fourier-transform ion cyclotron resonance mass spectrometer. The reaction rates are cluster size dependent and parallel for all the three alkanes. While the reactions proceed close to the theoretical collision rates for a large number of clusters, characteristic minima are observed for Rh+ (5/6/9/19/28). The degree of dehydrogenation varies with the cluster size with maxima for 10< or =n< or =15 for the three alkanes and for n=3 and 2-4 in the cases of ethane and propane, respectively. However, complete dehydrogenation is only observed for the reaction of Rh+ 11 with propane. Dehydrogenation is remarkably selective and no other neutral products than H2 are observed. The results are interpreted in terms of likely cluster geometries.  相似文献   

4.
Far- and mid-infrared multiple photon dissociation spectroscopy has been employed to study both the structure and surface reactivity of isolated cationic rhodium clusters with surface-adsorbed nitrous oxide, Rh(n)N(2)O(+) (n = 4-8). Comparison of experimental spectra recorded using the argon atom tagging method with those calculated using density functional theory (DFT) reveals that the nitrous oxide is molecularly bound on the rhodium cluster via the terminal N-atom. Binding is thought to occur exclusively on atop sites with the rhodium clusters adopting close-packed structures. In related, but conceptually different experiments, infrared pumping of the vibrational modes corresponding with the normal modes of the adsorbed N(2)O has been observed to result in the decomposition of the N(2)O moiety and the production of oxide clusters. This cluster surface chemistry is observed for all cluster sizes studied except for n = 5. Plausible N(2)O decomposition mechanisms are given based on DFT calculations using exchange-correlation functionals. Similar experiments pumping the Rh-O stretch in Rh(n)ON(2)O(+) complexes, on which the same chemistry is observed, confirm the thermal nature of this reaction.  相似文献   

5.
Reactions of neutral vanadium and tantalum oxide clusters with NO, NH(3), and an NO/NH(3) mixture in a fast flow reactor are investigated by time of flight mass spectrometry and density functional theory (DFT) calculations. Single photon ionization through a 46.9 nm (26.5 eV) extreme ultraviolet (EUV) laser is employed to detect both neutral cluster distributions and reaction products. Association products VO(3)NO and V(2)O(5)NO are detected for V(m)O(n) clusters reacting with pure NO, and reaction products, TaO(3,4)(NO)(1,2), Ta(2)O(5)NO, Ta(2)O(6)(NO)(1-3), and Ta(3)O(8)(NO)(1,2) are generated for Ta(m)O(n) clusters reacting with NO. In both instances, oxygen-rich clusters are the active metal oxide species for the reaction M(m)O(n)+NO→M(m)O(n)(NO)(x). Both V(m)O(n) and Ta(m)O(n) cluster systems are very active with NH(3). The main products of the reactions with NH(3) result from the adsorption of one or two NH(3) molecules on the respective clusters. A gas mixture of NO:NH(3) (9:1) is also added into the fast flow reactor: the V(m)O(n) cluster system forms stable, observable clusters with only NH(3) and no V(m)O(n)(NO)(x)(NH(3))(y) species are detected; the Ta(m)O(n) cluster system forms stable, observable mixed clusters, Ta(m)O(n)(NO)(x)(NH(3))(y), as well as Ta(m)O(n)(NO)(x) and Ta(m)O(n)(NH(3))(y) individual clusters, under similar conditions. The mechanisms for the reactions of neutral V(m)O(n) and Ta(m)O(n) clusters with NO/NH(3) are explored via DFT calculations. Ta(m)O(n) clusters form stable complexes based on the coadsorption of NO and NH(3). V(m)O(n) clusters form weakly bound complexes following the reaction pathway toward end products N(2)+H(2)O without barrier. The calculations give an interpretation of the experimental data that is consistent with the condensed phase reactivity of V(m)O(n) catalyst and suggest the formation of intermediates in the catalytic chemistry.  相似文献   

6.
采用CCSD(T)/aug-cc-p VTZ//B3LYP/6-311+G(2df,2p)方法对n(H_2O)(n=0,1,2)参与HO_2+NO→HNO_3反应的微观机理和速率常数进行了研究.结果表明,由于水分子与HO_2形成的复合物(H_2O…HO_2,HO_2…H_2O)结合NO与水分子形成的复合物(NO…H_2O,ON…H_2O)的反应方式具有较高能垒和较低有效速率,其对HO_2+NO→HNO_3反应的影响远小于双体水(H_2O)2与HO_2(或NO)形成复合物然后再与另一分子反应物NO(或HO_2)的反应方式,因此n(H_2O)(n=1,2)催化HO_2+NO→HNO_3反应主要经历了HO_2…(H_2O)_n(n=1,2)+NO和NO…(H_2O)_n(n=1,2)+HO_22种反应类型.由于HO_2…(H_2O)_n(n=1,2)+NO反应的低能垒和高速率,HO_2…(H_2O)_n(n=1,2)+NO反应优于NO…(H_2O)_n(n=1,2)+HO_2反应.与此同时,由于计算温度范围内HO_2…H_2O+NO反应的有效速率常数比HO_2…(H_2O)2+NO反应对应的有效速率常数大了10~12数量级,可推测(H_2O)_n(n=1,2)催化HO_2+NO→HNO_3反应主要来自于单个水分子.此外,在216.7~298.6 K范围内水分子对HO_2+NO→HNO_3反应起显著的正催化作用,且随温度的升高有明显增大的趋势,在298.2 K时增强因子k'RW1/ktotal达到67.93%,表明在实际大气环境中水蒸气对HO_2+NO→HNO_3反应具有显著影响.  相似文献   

7.
The reaction of [Rh(7)(CO)(16)](3-) with SnCl(2).2H(2)O in a 1 : 1 molar ratio under N(2) results in the formation of the new heterometallic cluster, [Rh(12)Sn(CO)(27)](4-), in very high yield (ca. 86%). Further controlled additions of SnCl(2).2H(2)O, or solutions of HCl, or [RhCl(COD)](2), give [Rh(12)(micro-Cl)(2)Sn(CO)(23)](4-). Similarly, addition of HBr to [Rh(12)Sn(CO)(27)](4-) gives the related cluster [Rh(12)(micro-Br)(2)Sn(CO)(23)](4-). Notably, if the addition of SnCl(2).2H(2)O to [Rh(12)Sn(CO)(27)](4-) is carried out under a CO atmosphere, the reaction takes a different course and leads to the formation of the new cluster, [Rh(12)Sn(micro(3)-RhCl)(CO)(27)](4-). All the above clusters have been shown by single-crystal X-ray diffraction studies to have a metal framework based on an icosahedron, which is centred by the unique Sn atom. Their chemical reactivity and (13)C-{(103)Rh} HMQC NMR spectroscopic characterization are also reported.  相似文献   

8.
Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable vanadium oxide clusters VO2, V2O5, V3O7, V4O10, etc. tend to associate with C2H4 generating products V(m)O(n)C2H4. Oxygen-rich clusters VO3(V2O5)(n=0,1,2...), (e.g., VO3, V3O8, and V5O13) react with C2H4 molecules to cause a cleavage of the C=C bond of C2H4 to produce (V2O5)(n)VO2CH2 clusters. For the reactions of vanadium oxide clusters (V(m)O(n)) with C2H2 molecules, V(m)O(n)C2H2 are assigned as the major products of the association reactions. Additionally, a dehydration reaction for VO3 + C2H2 to produce VO2C2 is also identified. C2H6 molecules are quite stable toward reaction with neutral vanadium oxide clusters. Density functional theory calculations are employed to investigate association reactions for V2O5 + C2H(x). The observed relative reactivity of C2 hydrocarbons toward neutral vanadium oxide clusters is well interpreted by using the DFT calculated binding energies. DFT calculations of the pathways for VO3+C2H4 and VO3+C2H2 reaction systems indicate that the reactions VO3+C2H4 --> VO2CH2 + H2CO and VO3+C2H2 --> VO2C2 + H2O are thermodynamically favorable and overall barrierless at room temperature, in good agreement with the experimental observations.  相似文献   

9.
Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.  相似文献   

10.
DFT calculations have been applied to investigate the reaction mechanism of rhodium dimer, [Rh(CO)2Cl]2, catalyzed intermolecular (5 + 2) reactions between vinylcyclopropanes and alkynes. The catalytic species is Rh(CO)Cl and the catalytic cycle is through the sequential reactions of cyclopropyl cleavage of vinylcyclopropane, alkyne insertion (rate-determining step), and a migratory reductive elimination.  相似文献   

11.
Reactions of neutral V(n), Nb(n), and Ta(n) metal clusters (n< or =11) with CO+H(2) mixed gases and CH(3)OH in a flow tube reactor (1-50 Torr) are studied by time of flight mass spectroscopy and density functional theory calculations. Metal clusters are generated by laser ablation, and reactants and products are ionized by low fluence (approximately 200 microJ/cm(2)) 193 nm excimer laser light. Nb(n) clusters exhibit strong size dependent reactivity in reactions both with CO+H(2) and CH(3)OH compared with V(n) and Ta(n) clusters. A "magic number" (relatively intense) mass peak at Nb(8)COH(4) is observed in the reaction of Nb(n) clusters with CO+H(2), and CH(3)OH is suggested to be formed. This feature at Nb(8)COH(4) remains the most intense peak independent of the relative concentrations of CO and H(2) in the flow tube reactor. No other Nb(n), Ta(n), or V(n) feature behaves in this manner. In reactions of CH(3)OH with metal clusters M(n) (M=V, Nb, and Ta, n=3-11), nondehydrogenated products M(n)COH(4)/M(n)CH(3)OH are only observed on Nb(8) and Nb(10), whereas dehydrogenated products M(n)CO/CM(n)O are observed for all other clusters. These observations support the suggestion that CH(3)OH can be formed on Nb(8) in the reaction of Nb(n) with CO+H(2). A reaction mechanism is suggested based on the experimental results and theoretical calculations of this work and of those in the literature. Methanol formation from CO+H(2) on Nb(8) is overall barrierless and thermodynamically and kinetically favorable.  相似文献   

12.
The chemical bond formation in oxygen-rich Si(n)O(m) clusters was investigated by sampling the potential energy surface of the model systems SiO + SiO(2) → Si(2)O(3) and (SiO)(2) + SiO(2) → Si(3)O(4) along a two-dimensional reaction coordinate, by density functional theory calculations. Evidence for crossing between the weakly bound neutral-neutral (SiO)(n) + SiO(2) and the highly attractive ion-pair (SiO)(n)(+) + SiO(2)(-) surfaces was found. Analysis of frontier molecular orbitals and charge distribution showed that surface crossing involves transfer of valence electron charge from (SiO)(2) to SiO(2). The sum of the natural atomic charges over the (SiO)(n) and (SiO(2)) groups of the Si(n)O(m) cluster products, gave a net positive charge on the (SiO)(n) "core" and a net negative charge on the (SiO(2)) groups. This is interpreted as the "ion-pair memory" left on the Si(n)O(m) products by the charge-transfer mechanism and may provide a way to assess the role of charge-transfer processes in the assembly of larger Si(n)O(m) neutral clusters.  相似文献   

13.
The photochemical production and chemical reactivity of a new coordinatively unsaturated rhodium monocarbonyl species on the surface of dealuminated zeolite Y over a temperature range of 300-420 K and a pressure range from 10(-5) to 20 Torr has been studied. Using high vacuum techniques and transmission infrared spectroscopy, ultraviolet irradiation (350 +/- 50 nm) of supported Rh(CO)(2) surface species led to the production of stable, but reactive, =Rh(CO) surface species, characterized by an infrared band at 2023 cm(-1). The coordinatively unsaturated =Rh(CO) species convert to less reactive and coordinatively saturated Rh(CO) by thermal treatment above 370 K. The Rh(CO) species were characterized by an infrared band at 2013 cm(-1). An explanation of the mode of bonding of the rhodium monocarbonyl species to the zeolite surface is provided. Coordinatively unsaturated =Rh(CO) species captured N(2), H(2), and O(2) gas molecules near room temperature to produce a variety of mixed ligand rhodium surface complexes of the form Rh(CO)(N(2)), Rh(CO)(H(2)), Rh(CO)(H)(2), Rh(CO)(H), Rh(CO)(O), and Rh(O). Infrared band assignments for the new species are provided. The work provides new insight into the photochemical behavior of Rh(CO)(2) species supported on high-area zeolite materials and may improve our understanding of the role of active rhodium monocarbonyl species in the development of heterogeneous photocatalysts.  相似文献   

14.
Reactions of the halides X- (X- = chloride, bromide or iodide) with the substituted cluster Rh6(CO)15(PPh3) in oxygen-free chloroform lead to [Rh5(CO)14(PPh3)]-, Rh(CO)2(PPh3)2X and [Rh(CO)2X2]- in the molar ratios 2:1: approximately 13. Oxidation by the solvent is assumed to lead to most of the Rh(I) product, and the stoichiometry for reactions with I- can be defined as 4Rh6(CO)15(PPh3) + 27I- + 12CHCl3 --> 2[Rh5(CO)14(PPh3)]- + Rh(CO)2(PPh3)2I + 13[Rh(CO)2I2]- + 6C2H2Cl4 + 4CO + 12Cl-. This can be rationalized quite simply with the aid of a few generally justifiable assumptions. Rate constants for reactions with bromide increase to a limiting value with increasing [Br-] in a way that shows that breaking of one Rh-Rh bond, with an unusual closo to nido structural change, is rate determining. This opening of the cluster might be spontaneous or solvent induced. To complete the reaction, the bromide has to compete with the reverse nido to closo change. The same closo to nido change is also a major rate determining step for reactions with P(OPh)3 in oxygen-free solutions, and for reactions with bromide in oxygenated solutions in the presence of trifluoroacetic and some other acids. The limiting rates increase slightly with increasing basicity of the ligands P(p-XC6H4)3 along the series X = F3C, Cl, F, H and MeO. Activation parameters for these reactions are reported.  相似文献   

15.
Titanium oxide clusters were formed in the gas phase by the laser ablation of a Ti rod in the presence of oxygen in a He gas. Not only stoichiometric but also nonstoichiometric titanium oxide clusters, Ti(n)O(2n+x)(+) (n = 1-22 and x = -1-3), were formed. The content of oxygen atoms depends strongly on a partial pressure of oxygen. Gold clusters, Au(m) (m = 1-4), were generated by the laser ablation, which were then deposited on Ti(n)O(2n+x) clusters. The formation of Au(m)Ti(n)O(2n+x)(+) follows electron transfer from Au(m) to Ti(n)O(2n+x)(+). The reactivity of Au(m)Ti(n)O(2n+x)(+) cluster ions with CO was examined for different m, n, and x by the mass spectrometry. It was found that Au(m) on Ti(n)O(2n-1)(+) are less reactive than those on the other Ti(n)O(2n+x)(+) (x = 0 and 1). In addition, the reactivity is highest when Au(m) (m = 1 and 3) is on the stoichiometric titanium oxide (x = 0), whereas the reactivity is also high when Au(2) is on the oxygen-rich titanium oxide (x = 1). The reactivity was found to relate to geometrical structures of Au(m)Ti(n)O(2n+x)(+), which were studied by density functional calculations.  相似文献   

16.
本文报告了由金属盐直接固相合成负载铑络合物或原子簇催化剂的新方法及IR谱表征。CO容易使表面吸附有水分子的RhCl_3/SiO_2还原并生成表面羰基物Rh~+-(CO)_2/SiO_2;CO、CO/H_2和CO/2H_2等不同还原气对表面络合物的生成没有影响。采用H_2还原只能得到金属Rh催化剂。水是重要影响因素,如果RhCl_3/SiO_2先抽空脱水,再用含水的CO还原,就会使Rh~+(CO)_2/SiO_2转化为Rh_6(CO)_(16)/SiO_2。此外,还考察了负载原子簇的CO加氢和热分解反应性能。采用CO还原RhCl_3/SiO_2制备的催化剂同负载原子簇催化剂的反应行为非常相近,而且比传统催化剂具有更高的反应活性。  相似文献   

17.
The reactions of C(2)H(4) with H(2) on neutral vanadium sulfide clusters in a fast flow reactor are investigated by time-of-flight mass spectrometry employing 118 nm (10.5 eV) single photon ionization. The experimental products of these reactions are V(m)S(n)C(2)H(x) (m=1, n=1-3; m=2, n=1-5, and x=4-6). Observation of these products indicates that these V(m)S(n) clusters have high catalytic activity for hydrogenation reactions of C(2)H(4). Density functional theory calculations at the BPW91/TZVP level are carried out to explore the geometric and electronic structures of the V(m)S(n) clusters and to determine reaction intermediates and transition states, as well as reaction mechanisms. All reactions are estimated as overall barrierless or with only a small barrier (0.1 eV), and are thermodynamically favorable processes at room temperature. The ethylene molecule is predicted to connect with active V atoms through its π-orbital or form a σ-bond with active V atoms of catalytic V(m)S(n) clusters. The S atoms bonding with active V atoms play an important role in the dissociation of the H(2) molecule; H atoms transfer to the C(2)H(4) (one after another) following breaking of the H-H bond. A catalytic cycle for C(2)H(4) hydrogenation reactions on a vanadium sulfide catalyst surface is suggested based on our experimental and theoretical investigations.  相似文献   

18.
A reinvestigation of the redox chemistry of [Rh7(CO)16]3- resulted in the finding of new alternative syntheses for a series of previously reported Rh-centered carbonyl clusters, i.e., [H4-nRh14(CO)25]n- (n = 3 and 4) and [Rh17(CO)30]3-, as well as new species such as a different isomer of [Rh15(CO)27]3-, the carbonyl-substituted [Rh15(CO)25(MeCN)2]3-, and the conjuncto [Rh17(CO)37]3- clusters. All of the above clusters are suggested to derive from oxidation of [Rh7(CO)16]3- with H+, arising from dissociation either of [M(H2O)n]2+ aquo complexes or nonoxidizing acids. The nature of the previously reported species has been confirmed by IR, electrospray ionization mass spectrometry, and complete X-ray diffraction studies. Only the molecular structures of the new clusters are reported in some details. The ready conversion of [Rh7(CO)16]3- in [HRh14(CO)25]3- upon oxidation has been confirmed by electrochemical techniques. In addition, electrochemical studies point out that the close-packed [H3Rh13(CO)24]2- dianion undergoes a reversible monoelectronic reduction followed by an irreversible reduction. The irreversibility of the second reduction is probably a consequence of H2 elimination from a purported [H3Rh13(CO)24]4- species. Conversely, the body-centered-cubic [HRh14(CO)25]3- and [Rh15(CO)27]3- trianions display several well-defined redox changes with features of electrochemical reversibility, even at low scan rate. The major conclusion of this work is that mild experimental conditions and a tailored oxidizing reagent may enable more selective conversion of [Rh7(CO)16]3- into a higher-nuclearity rhodium carbonyl cluster. It is also shown that isonuclear Rh clusters may display isomeric metal frameworks [i.e., [Rh15(CO)27]3-], as well as almost identical metal frames stabilized by a different number of carbonyl groups [i.e., [Rh15(CO)27]3- and [Rh15(CO)30]3-]. Other isonuclear Rh clusters stabilized by a different number of CO ligands more expectedly exhibit completely different metal geometries [i.e., [Rh17(CO)30]3- and [Rh17(CO)37]3-]. The first pair of isonuclear and isoskeletal clusters is particularly astonishing in that [Rh15(CO)30]3- features six valence electrons more than [Rh15(CO)27]3-. Finally, the electrochemical studies seem to suggest that interstitial Rh atoms are less effective than Ni and Pt interstitial atoms in promoting redox properties and inducing molecular capacitor behavior in carbonyl clusters.  相似文献   

19.
Titanium oxide clusters are generated in a supersonic expansion by laser ablation of the metal and reaction with oxygen (0.1-6%) in He expansion gas. Mass spectra of the titanium oxide clusters are observed by photoionization with lasers of three different wavelengths: 118, 193, and 355 nm. Only the 118 nm (10.5 eV) light can ionize Ti(m)O(n) neutral clusters without fragmentation. Both the 193 nm (6.4 eV) and 355 nm (3.5 eV) multiphoton ionization cause fragmentation of the neutral clusters during the ionization process and, thus, can complicate the determination of the stable neutral Ti(m)O(n) gas-phase species. Employing 118 nm single-photon ionization and line-width data, the Ti(m)O(2m) and Ti(m)O(2m+1) series are found to be the most stable neutral cluster species for high oxygen content in the expansion gas. Fragmentation during the multiphoton ionization process for 193 nm light yields the cluster ions Ti(m)O(2m-1,-2)+. These ions are formed by the loss of one or two oxygen atoms from Ti(m)O(2m,2m+1) neutral species. The dominant cluster growth process is suggested to be through the addition of TiO2 species. For low oxygen content (<2%) in the expansion gas, oxygen-deficient clusters of the form Ti(m)O(2m-1,-2) are also observed. These latter series are not fragmented by the 193 nm ionization process.  相似文献   

20.
The reactions of hydrosilane and/or alkyne as well as isonitriles with rhodium and rhodium cobalt mixed metal carbonyl clusters, e.g., Rh4(CO)12 and Co2Rh2(CO)12, are studied. Novel mixed metal complexes, e.g., CoRh(CO)5 (HCCBu n ), (R3Si)2Rh(CO) n Co(CO)4, Rh(R–NC)4Co(CO)4, Co2Rh2(CO)10(HCCR), and Co2Rh2(CO)9(HCCBu n ), are synthesized and identified. The catalytic activities of these rhodium and rhodium-cobalt mixed metal complexes are examined in hydrosilyation, silylformylation, and novel silylcarbocyclization reactions. Possible mechanisms for these reactions are proposed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号