首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Semitransparent dark-red or ruby-red moisture- and air-sensitive single crystals of A(10+x)[Ge(9)](2)[W(1-x)Nb(x)O(4)] (A = K, Rb; x = 0, 0.35) were obtained by high-temperature solid-state reactions. The crystal structure of the compounds was determined by single-crystal X-ray diffraction experiments. They crystallize in a new structure type (P2(1)/c, Z = 4) with a = 13.908(1) ?, b = 15.909(1) ?, c = 17.383(1) ?, and β = 90.050(6)° for K(10.35(1))[Ge(9)](2)[W(0.65(1))Nb(0.35(1))O(4)]; a = 14.361(3) ?, b = 16.356(3) ?, c = 17.839(4) ?, and β = 90.01(3)° for Rb(10.35(1))[Ge(9)](2)[W(0.65(1))Nb(0.35(1))O(4)]; a = 13.8979(2) ?, b = 15.5390(3) ?, c = 17.4007(3) ?, and β = 90.188(1)° for K(10)[Ge(9)](2)WO(4); and a = 14.3230(7) ?, b = 15.9060(9) ?, c = 17.8634(9) ?, and β = 90.078(4)° for Rb(10)[Ge(9)](2)WO(4). The compounds contain discrete Ge(9)(4-) Wade's nido clusters and WO(4)(2-) (or NbO(4)(3-)) anions, which are packed according to a hierarchical atom-to-cluster replacement of the Al(2)Cu prototype and are separated by K and Rb cations, respectively. The alkali metal atoms occupy the corresponding tetrahedral sites of the Al(2)Cu prototype. The amount of the alkali metal atoms on these diamagnetic compounds corresponds directly to the amount of W substituted by Nb. Thus, the transition metals W and Nb appear with oxidation numbers +6 and +5, respectively, in the vicinity of a [Ge(9)](4-) polyanion. The crystals of the mixed salts were further characterized by Raman spectroscopy. The Raman data are in good agreement with the results from the X-ray structural analyses.  相似文献   

2.
An extensive series of radical salts formed by the organic donor bis(ethylenedithio)tetrathiafulvalene (ET), the paramagnetic tris(oxalato)ferrate(III) anion [Fe(C(2)O(4))(3)](3-), and halobenzene guest molecules has been synthesized and characterized. The change of the halogen atom in this series has allowed the study of the effect of the size and charge polarization on the crystal structures and physical properties while keeping the geometry of the guest molecule. The general formula of the salts is ET(4)[A(I)Fe(C(2)O(4))(3)]·G with A/G = H(3)O(+)/PhF (1); H(3)O(+)/PhCl (2); H(3)O(+)/PhBr (3), and K(+)/PhI (4), (crystal data at room temperature: (1) monoclinic, space group C2/c with a = 10.3123(2) ?, b = 20.0205(3) ?, c = 35.2732(4) ?, β = 92.511(2)°, V = 7275.4(2) ?(3), Z = 4; (2) monoclinic, space group C2/c with a = 10.2899(4) ?, b = 20.026(10) ?, c = 35.411(10) ?, β = 92.974°, V = 7287(4) ?(3), Z = 4; (3) monoclinic, space group C2/c with a = 10.2875(3) ?, b = 20.0546(15) ?, c = 35.513(2) ?, β = 93.238(5)°, V = 7315.0(7) ?(3), Z = 4; (4) monoclinic, space group C2/c with a = 10.2260(2) ?, b = 19.9234(2) ?, c = 35.9064(6) ?, β = 93.3664(6)°, V = 7302.83(18) ?(3), Z = 4). The crystal structures at 120 K evidence that compounds 1-3 undergo a structural transition to a lower symmetry phase when the temperature is lowered (crystal data at 120 K: (1) triclinic, space group P1 with a = 10.2595(3) ?, b = 11.1403(3) ?, c = 34.9516(9) ?, α = 89.149(2)°, β = 86.762(2)°, γ = 62.578(3)°, V = 3539.96(19) ?(3), Z = 2; (2) triclinic, space group P1 with a = 10.25276(14) ?, b = 11.15081(13) ?, c = 35.1363(5) ?, α = 89.0829(10)°, β = 86.5203(11)°, γ = 62.6678(13)°, V = 3561.65(8) ?(3), Z = 2; (3) triclinic, space group P1 with a = 10.25554(17) ?, b = 11.16966(18) ?, c = 35.1997(5) ?, α = 62.7251(16)°, β = 86.3083(12)°, γ = 62.7251(16)°, V = 3575.99(10) ?(3), Z = 2; (4) monoclinic, space group C2/c with a = 10.1637(3) ?, b = 19.7251(6) ?, c = 35.6405(11) ?, β = 93.895(3)°, V = 7128.7(4) ?(3), Z = 4). A detailed crystallographic study shows a change in the symmetry of the crystal for compound 3 at about 200 K. This structural transition arises from the partial ordering of some ethylene groups in the ET molecules and involves a slight movement of the halobenzene guest molecules (which occupy hexagonal cavities in the anionic layers) toward one of the adjacent organic layers, giving rise to two nonequivalent organic layers at 120 K (compared to only one at room temperature). The structural transition at about 200 K is also observed in the electrical properties of 1-3 and in the magnetic properties of 1. The direct current (dc) conductivity shows metallic behavior in salts 1-3 with superconducting transitions at about 4.0 and 1.0 K in salts 3 and 1, respectively. Salt 4 shows a semiconductor behavior in the temperature range 300-50 K with an activation energy of 64 meV. The magnetic measurements confirm the presence of high spin S = 5/2 [Fe(C(2)O(4))(3)](3-) isolated monomers together with a Pauli paramagnetism, typical of metals, in compounds 1-3. The magnetic properties can be very well reproduced in the whole temperature range with a simple model of isolated S = 5/2 ions with a zero field splitting plus a temperature independent paramagnetism (Nα) with the following parameters: g = 1.965, |D| = 0.31 cm(-1), and Nα = 1.5 × 10(-3) emu mol(-1) for 1, g = 2.024, |D| = 0.65 cm(-1), and Nα = 1.4 × 10(-3) emu mol(-1) for 2, and g = 2.001, |D| = 0.52 cm(-1), and Nα = 1.5 × 10(-3) emu mol(-1) for 3.  相似文献   

3.
A new ligand family based on picoline, bipyridine and terpyridine containing a nitro moiety has been synthesized and its coordination and sensitization ability for lanthanide ions has been studied. Three new complexes were characterized by X-ray single crystal diffraction and all three show uncommon coordination of the nitro moiety to the lanthanide ion. , a terpyridine-nitro derivative with Tb(NO(3))(3), crystallizes in the orthorhombic space group Pbca with a = 15.125(3), b = 13.776(3), c = 18.716(4) ?, and V = 3899.8(13) ?(3) and is isostructural with its Eu(iii) analog () with cell parameters a = 15.1341(4), b = 13.7070(4), c = 18.8277(5) ?. , a tripodal amine with a nitro-derivatized pyridine with Eu(CF(3)SO(3))(3), crystallizes in the triclinic space group P1[combining macron] with a = 11.067(2), b = 11.633(2), c = 12.772(3) ?, α = 110.94(3), β = 97.49(3), γ = 91.42(3)° and V = 1518.1(5) ?(3). Finally, ligand , a bipyridine-nitro derivative, crystallizes in the orthorhombic space group P2(1)/n with a = 3.7128(3), b = 11.7806(8), c = 19.9856(14) ?, β = 92.925(2)° and V = 873.01(11) ?(3). All four ligands show sensitization of Eu(iii) and Tb(iii) luminescence.  相似文献   

4.
A basic bismuth(III) nitrate with the composition [Bi(6)O(4)(OH)(4)](0.5)[Bi(6)O(5)(OH)(3)](0.5)(NO(3))(5.5) formed in a slow crystal growth mode has an ordered crystal structure with the monoclinic space group P2(1) and lattice parameters a = 15.850(3), b = 14.986(3), c = 18.230(4) ?, β = 107.329(17)° and volume V = 4133.6 ?(3) (Henry et al. 2003). In a very fast crystal growth mode the complex ions disorder in another P2(1) cell with slightly different lattice parameters a = 15.8404(1), b = 15.1982(1), c = 18.3122(1) ?, β = 106.829(1)° and V = 4219.8 ?(3). This cell can be related to two smaller cells: a monoclinic C2/m cell with a = 13.7161(1), b = 15.1943(1), c = 10.2399(1) ?, β = 98.586(1)° and V = 2110.1 ?(3) and a trigonal R3 cell with a = 15.18650(6), c = 15.8416(1) ? (hexagonal setting) and V = 3164.1 ?(3). These smaller cells correspond to average structures and hence the X-ray data do not account for the difference in the structures of the two different complex ions. However, when analysing neutron powder diffraction data, it is possible to distinguish between the two complex ions using a trigonal R3 cell with a = 15.1865(1) and c = 15.8416(1) ? (hexagonal setting). In a Rietveld type structure model refinement with a total of 28 atom sites (4 Bi, 3 N, 15 O and 6 H), the composition of this sample is determined to be [Bi(6)O(4)(OH)(4)](0.54(1))[Bi(6)O(5)(OH)(3)](0.46(1))(NO(3))(5.54(1)).  相似文献   

5.
Six new homodinuclear lanthanide(III) complexes with a flexible tripodal carboxylate ligand (H(3)L), of formulae [Ln(2)L(2)(DMF)(4)]·4DMF (Ln = La (1), Nd (2), Eu (3), Gd (4), Tb (5), Dy (6), DMF = N, N-Dimethylformamide) have been synthesized. Among them, 1, 2, 3, 4, 6 were characterized by single-crystal X-ray diffraction, which crystallized in the monoclinic space group P2(1)/n with a = 13.309(2) ?, b = 27.404(4) ?, c = 16.686(3) ?, β = 105.115(2) and V = 5875.2(17) ?(3) for 1, a = 13.3016(5) ?, b = 27.1952(12) ?, c = 16.6339(7) ?, β = 105.030(2) and V = 5811.3(4) ?(3) for 2, a = 13.2797(10) ?, b = 27.072(2) ?, c = 16.6564(13) ?, β = 104.9390(10) and V = 5785.7(8) ?(3) for 3, a = 13.2855(3) ?, b = 27.0074(6) ?, c = 16.6357(3) ?, β = 104.9790(10) and V = 5766.2(2) ?(3) for 4, a = 13.2837(5) ?, b = 26.9105(10) ?, c = 16.6066(6) ?, β = 104.917(2) and V = 5736.3(4) ?(3) for 6. The crystal structures reveal that these complexes are isostructural, and molecules are connected from 0D to 3D supramolecular structures by hydrogen bonds. All of them were characterized by elemental analysis, IR spectroscopy, XRD and TGA. Unusually, non-luminescent Tb(III) complex was obtained. The photophysical property of the Eu(III) complex and the magnetic property of Gd(III) complex are investigated and discussed in detail.  相似文献   

6.
A series of mercury(II) ionic liquids, [C(n)mim][HgX(3)], where [C(n)mim] = n-alkyl-3-methylimidazolium with n = 3, 4 and X = Cl, Br, have been synthesized following two different synthetic approaches, and structurally characterized by means of single-crystal X-ray structure analysis ([C(3)mim][HgCl(3)] (1), Cc (No. 9), Z = 4, a = 16.831(4) ?, b = 10.7496(15) ?, c = 7.4661(14) ?, β = 105.97(2)°, V = 1298.7(4) ?(3) at 298 K; [C(4)mim][HgCl(3)] (2), Cc (No. 9), Z = 4, a = 17.3178(28) ?, b = 10.7410(15) ?, c = 7.4706(14) ?, β = 105.590(13)°, V = 1338.5(4) ?(3) at 170 K; [C(3)mim][HgBr(3)] (3), P2(1)/c (No. 14), Z = 4, a = 10.2041(10) ?, b = 10.7332(13) ?, c = 14.5796(16) ?, β = 122.47(2)°, V = 1347.2(3) ?(3) at 170 K; [C(4)mim][HgBr(3)] (4), Cc (No. 9), Z = 4, a = 17.093(3) ?, b = 11.0498(14) ?, c = 7.8656(12) ?, β = 106.953(13)°, V = 1421.1(4) ?(3) at 170 K). Compounds 1, 2, and 4 are isostructural and are characterized by strongly elongated trigonal [HgX(5)] bipyramids, which are connected via common edges in chains. In contrast, 3 contains [Hg(2)Br(6)] units formed by two edge-sharing tetrahedra. With melting points of 69.3 °C (1), 93.9 °C (2), 39.5 °C (3), and 58.3 °C (4), all compounds qualify as ionic liquids. 1, 2, and 4 solidify upon fast cooling as glasses, whereas 3 crystallizes. Cyclic voltammetry shows two separate, quasi-reversible redox processes, which can be associated with the 2Hg(2+)/Hg(2)(2+) and Hg(2)(2+)/2Hg redox couples.  相似文献   

7.
The ternary arsenides A(2)Zn(2)As(3) and the quaternary derivatives A(2)Ag(2)ZnAs(3) (A = Sr, Eu) have been prepared by stoichiometric reaction of the elements at 800 °C. Compounds A(2)Zn(2)As(3) crystallize with the monoclinic Ba(2)Cd(2)Sb(3)-type structure (Pearson symbol mC28, space group C2/m, Z = 4; a = 16.212(5) ?, b = 4.275(1) ?, c = 11.955(3) ?, β = 126.271(3)° for Sr(2)Zn(2)As(3); a = 16.032(4) ?, b = 4.255(1) ?, c = 11.871(3) ?, β = 126.525(3)° for Eu(2)Zn(2)As(3)) in which CaAl(2)Si(2)-type fragments, built up of edge-sharing Zn-centered tetrahedra, are interconnected by homoatomic As-As bonds to form anionic slabs [Zn(2)As(3)](4-) separated by A(2+) cations. Compounds A(2)Ag(2)ZnAs(3) crystallize with the monoclinic Yb(2)Zn(3)Ge(3)-type structure (Pearson symbol mC32, space group C2/m; a = 16.759(2) ?, b = 4.4689(5) ?, c = 12.202(1) ?, β = 127.058(1)° for Sr(2)Ag(2)ZnAs(3); a = 16.427(1) ?, b = 4.4721(3) ?, c = 11.9613(7) ?, β = 126.205(1)° for Eu(2)Ag(2)ZnAs(3)), which can be regarded as a stuffed derivative of the Ba(2)Cd(2)Sb(3)-type structure with additional transition-metal atoms in tetrahedral coordination inserted to link the anionic slabs together. The Ag and Zn atoms undergo disorder but with preferential occupancy over four sites centered in either tetrahedral or trigonal planar geometry. The site distribution of these metal atoms depends on a complex interplay of size and electronic factors. All compounds are Zintl phases. Band structure calculations predict that Sr(2)Zn(2)As(3) is a narrow band gap semiconductor and Sr(2)Ag(2)ZnAs(3) is a semimetal. Electrical resistivity measurements revealed band gaps of 0.04 eV for Sr(2)Zn(2)As(3) and 0.02 eV for Eu(2)Zn(2)As(3), the latter undergoing an apparent metal-to-semiconductor transition at 25 K.  相似文献   

8.
Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) ?, b = 13.4298(9) ?, c = 17.8471(14) ?, β = 94.531(6)°, V = 2210.5(3) ?(3); 2, a = 9.0149(3) ?, b = 16.9298(4) ?, c = 15.6864(4) ?, β = 90.129(3)°, V = 2394.06(12) ?(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1? both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) ?, b = 20.3871(9) ?, c = 34.9715(15) ?, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) ?(3); 5, a = 20.0329(4) ?, b = 20.0601(4) ?, c = 34.3532(6) ?, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) ?(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.  相似文献   

9.
Ni-centered deltahedral Sn(9) clusters with a charge of 4-, i.e., [Ni@Sn(9)](4-), were extracted in ethylenediamine in high yield directly from intermetallic precursors with the nominal composition "K(4)Sn(9)Ni(3)". The new endohedral clusters were crystallized and structurally characterized in K[K(18-crown-6)](3)[Ni@Sn(9)]·3benzene (1a, triclinic, P1?, a = 10.2754(5) ?, b = 19.5442(9) ?, and c = 20.5576(13) ?, α = 73.927(3)°, β = 79.838(4)°, and γ = 84.389(3)°, V = 3899.6(4) ?(3), Z = 2) and K[K(2,2,2-crypt)](3)[Ni@Sn(9)] (1b, triclinic, P1, a = 15.8028(8) ?, b = 16.21350(9) ?, and c = 20.1760(12) ?, α = 98.71040(10)°, β = 104.4690(10)°, and γ = 118.3890(10)°, V = 4181.5(4) ?(3), Z = 2). The alternative method of a post-synthetic insertion of a Ni atom in empty Sn(9) clusters by a reaction with Ni(cod)(2) predominantly produces the more-oxidized clusters with a charge of 3-, i.e., the recently reported [Ni@Sn(9)](3-). Nonetheless, using substoichiometric amounts of 18-crown-6 as a cation sequestering agent, we also have been able to isolate the 4- clusters as a minor phase from such reactions. They were structurally characterized in K[K(en)][K(18-crown-6)](2)[Ni@Sn(9)]·0.5en (2, monoclinic, P2(1)/n, a = 10.4153(5) ?, b = 25.6788(11) ?, and c = 20.6630(9) ?, β = 102.530(2)°, V = 5394.7(4) ?(3), Z = 2). The ability of the Ni-centered clusters to exist with both 3- and 4- charges parallels the same ability of the empty clusters and is very promising for similarly rich chemistry involving electron transfer and flexible "oxidation states". We also report the synthesis and characterization of the endohedral heteroatomic dimer [{Ni@Sn(8)(μ-Ge)(1/2)}(2)](4-) composed of two [Ni@(Sn(8)Ge)]-clusters fused at the Ge-vertex. The dimer was synthesized by reacting an ethylenediamine solution of a ternary precursor with the nominal composition "K(4)Ge(4.5)Sn(4.5)", which is known to produce heteroatomic Ge(9-x)Sn(x) clusters, with Ni(cod)(2). It is isostructural with the reported [{Ni@Sn(8)(μ-Sn)(1/2)}(2)](4-) and is structurally characterized in [K-(2,2,2-crypt)](4)[{Ni@Sn(8)(μ-Ge)(1/2)}(2)]·2en (3, monoclinic, C2/c, a = 30.636(2) ?, b = 16.5548(12) ?, and c = 28.872(2) ?, β = 121.2140(10)°, V = 12523.5(15) ?(3), Z = 4).  相似文献   

10.
Li[V(eddadp)]·3H(2)O (1a) and Cs[V(eddadp)]·2H(2)O (1b) were characterized by X-ray crystallography. 1a crystallizes in the monoclinic space group Cc with a = 11.467(7) ?, b = 13.398(8) ?, c = 12.529(8) ?, β = 114.85(4)°; V = 1746.7(2) ?(3), and Z = 4; 1b crystallizes in the monoclinic space group P2(1)/n with a = 10.265(5) ?, b = 11.673(6) ?, c = 15.507(8) ?, β = 104.29(2)°, V = 1800.6(2) ?(3), and Z = 4. The solution structure of 1 has been ascertained to be predominantly six-coordinated with a hexadentate eddadp which is based on a comparison of the electronic and Raman spectra of aqueous solutions of 1 with those in the solid state.  相似文献   

11.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

12.
The sulfates Nb(2)O(2)(SO(4))(3), MoO(2)(SO(4)), WO(SO(4))(2,) and two modifications of Re(2)O(5)(SO(4))(2) have been synthesized by the solvothermal reaction of NbCl(5), WOCl(4), Re(2)O(7)(H(2)O)(2), and MoO(3) with sulfuric acid/SO(3) mixtures at temperatures between 200 and 300 °C. Besides the X-ray crystal structure determination of all compounds, the thermal behavior was investigated using thermogravimetric studies. WO(SO(4))(2) (monoclinic, P2(1)/n, a = 7.453(1) ?, b = 11.8232(8) ?, c = 7.881(1) ?, β = 107.92(2)°, V = 660.7(1) ?(3), Z = 4) and both modifications of Re(2)O(5)(SO(4))(2) (I: orthorhombic, Pba2, a = 9.649(1) ?, b = 8.4260(8) ?, c = 5.9075(7) ?, V = 480.27(9) ?(3), Z = 2; II: orthorhombic, Pbcm, a = 7.1544(3) ?, b = 7.1619(3) ?, c = 16.8551(7) ?, V = 863.64(6) ?(3), Z = 4) are the first structurally characterized examples of tungsten and rhenium oxide sulfates. Their crystal structure contains layers of sulfate connected [W═O] moieties or [Re(2)O(5)] units, respectively. The cohesion between layers is realized through weak M-O contacts (343-380 pm). Nb(2)O(2)(SO(4))(3) (orthorhombic, Pna2(1), a = 9.9589(7) ?, b = 11.7983(7) ?, c = 8.6065(5) ?, V = 1011.3(1) ?(3), Z = 4) represents a new sulfate-richer niobium oxide sulfate. The crystal structure contains a three-dimensional network of sulfate connected [Nb═O] moieties. In MoO(2)(SO(4)) (monoclinic, I2/a, a = 8.5922(6) ?, b = 12.2951(6) ?, c = 25.671(2) ?, β = 94.567(9)°, V = 2703.4(3) ?(3), Z = 24) [MoO(2)] units are connected through sulfate ions to a three-dimensional network, which is pervaded by channels along [100] accommodating the terminal oxide ligands. In all compounds except WO(SO(4))(2), the metal ions are octahedrally coordinated by monodentate sulfate ions and oxide ligands forming short M═O bonds. In WO(SO(4))(2), the oxide ligand and two monodentate and two bidentate sulfate ions build a pentagonal bipyramid around W. The thermal stability of the sulfates decreases in the order Nb > Mo > W > Re; the residues formed during the decomposition are the corresponding oxides.  相似文献   

13.
The synthesis and characterization of the tetrameric lithium thiolate (LiSC(6)H(2)-2,4,6-Ph(3))(4).C(7)H(8) (1), the trimeric lithium thiolate (LiSC(6)H(3)-2,6-Mes(2))(3).C(6)H(14)()()(2) (Mes = 2,4,6-Me(3)C(6)H(2)), the thiol HSC(6)H(3)-2,6-Trip(2) (3) (Trip = 2,4,6-i-Pr(3)C(6)H(2)), and the complete alkali metal series of dimeric thiolates (MSC(6)H(3)-2,6-Trip(2))(2) (M = Li (4, 5), Na (6), K (7), Rb (8), Cs (9)) are described. The compounds were characterized by (1)H, (7)Li, and (13)C NMR and IR spectroscopy and by X-ray crystallography. The compounds 1 and 2 crystallize as four- and three-rung ladder framework structures. The compounds 4-9 crystallize as dimers with M(2)S(2) cores. In addition, the metal ions interact with the ortho aryl groups to varying degrees in all the structures. The extent of these interactions appears to be determined mainly by ionic sizes and geometric factors. The coordination geometry of the thiolato sulfurs also varies from pyramidal in 1, 2, 4, 5, and 6 and one planar and one slightly pyramidal sulfur geometry in 7 to both sulfurs being planar coordinated in 8 and 9. Crystal data at 130 K are as follows: (LiSC(6)H(2)-2,4,6-Ph(3))(4).C(7)H(8) (1), a = 15.961(2) ?, b = 16.243(3) ?, c = 17.114(3) ?, alpha = 89.375(14) degrees, beta = 85.334(14) degrees, gamma = 63.343(12) degrees, V = 3950(1) ?(3), space group P&onemacr;, Z = 2, R(1) = 0.082; (LiSC(6)H(3)-2,6-Mes(2))(3).C(6)H(14)()()(2), a = 14.554(4) ?, b = 14.010(4) ?, c = 32.832(8) ?, beta = 95.20(2) degrees, V = 6667(2) ?(3), space group P2(1)/n, Z = 4, R(1) = 0.089; HSC(6)H(3)-2,6-Trip(2) (3), a = 8.180(2) ?, b = 25.437(5) ?, c = 15.752(3) ?, V = 3278(1) ?(3), space group Pnma, Z = 4, R(1) = 0.045; (LiC(6)H(3)-2,6-Trip(2))(2) (4), a = 12.652(2) ?, b = 14.218(1) ?, c = 18.713(2) ?, alpha = 83.56(1) degrees, beta = 84.36(1) degrees, gamma = 73.82(1) degrees, V = 3205(1) ?(3), space group P&onemacr;, Z = 2, R(1) = 0.055; (LiC(6)H(3)-2,6-Trip(2))(2).C(7)H(8) (5), a = 15.383(3) ?, b = 14.381(2) ?, c = 16.524(2) ?, beta = 111.10(1), V = 3410.3(9) ?(3), space group P2(1)/n, Z = 2, R(1) = 0.086; (NaSC(6)H(3)-2,6-Trip(2))(2).0.5C(7)H(8) (6), a = 13.952(2) ?, b = 20.267(2) ?, c = 24.475(3) ?, beta = 98.673(9) degrees, V = 6842(1) ?(3), space group P2(1)/n, Z = 4, R(1) = 0.068; (KSC(6)H(3)-2,6-Trip(2))(2).C(7)H(8) (7), a = 13.683(4) ?, b = 15.071(4) ?, c = 17.824(5) ?, alpha = 82.73(2), beta = 86.09(2), gamma = 88.46(2), V = 3637(2) ?(3), space group P&onemacr;, Z = 2, R(1) = 0.072; (RbSC(6)H(3)-2,6-Trip(2))(2).C(7)H(8) (8), a = 19.710(3) ?, b = 20.892(3) ?, c = 18.755(2) ?, beta = 106.900(9) degrees, V = 7389(2) ?(3), space group P2(1)/n, Z = 4, R(1) = 0.069; (CsSC(6)H(3)-2,6-Trip(2))(2) (9), a = 13.109(3) ?, b = 15.941(3) ?, c = 17.748(4) ?, alpha = 101.65(2) degrees, beta = 100.76(2) degrees, gamma = 104.25(2) degrees, V = 3410(1) ?(3), space group P&onemacr;, Z = 2, R(1) = 0.048.  相似文献   

14.
The X-ray crystal structure of the p-sulfonatocalix[5]arene(5)(-) anion (1b) in the form of the dimeric hydrate Na(10)[p-sulfonatocalix[5]arene](2).33.5H(2)O (2) is reported. The reactions of 1b with a number of transition metal salts to form transition metal bridged bis(calixarene) inclusion complexes have also been investigated. The X-ray crystal structure of the "Co(H(2)O)(4)(2+)" bridged species Na(8)[Co(H(2)O)(4)(p-sulfonatocalix[5]arene)(2)].2CH(3)C(O)N(CH(3))(2).37H(2)O (3) which incorporates a "supercavity" large enough to encompass 2 N,N-dimethylacetamide (dma) guest molecules as well as ca. 15 water molecules and Na(+) ions is reported. Crystal data are as follows: for 2, monoclinic space group P2(1)/c, Z = 4, a = 22.0644(4), b = 19.1180(3), c = 27.7834(4) ?, beta = 91.780(1), V = 11714.1(5) ?(3); complex 3, orthorhombic space group Pnma, Z = 4, a = 22.2271(5), b = 30.1693(6), c = 18.8503(4) ?, V = 12640.6(5) ?(3).  相似文献   

15.
Dark red crystals of Y?S(14.8), Tb?S(14.8), Dy?S(14.9), and Ho?S(14.9) have been obtained following different reaction routes. The isostructural title compounds adopt the Gd?Se?? type, a 24-fold superstructure of the ZrSSi-type and can be described in space group A112 (non standard setting of C121, no. 5) with lattice parameter of a = 11.505(1) ?, b = 15.385(1) ?, c = 15.726(1) ?, and γ = 90.21(2)° for Y?S(15-x); a = 11.660(1) ?, b = 15.468(2) ?, c = 15.844(2) ?, and γ = 90.19(2)° for Tb?S(15-x); a = 11.584(1) ?, b = 15.340(2) ?, c = 15.789(2) ?, and γ = 90.34(2)° for Dy?S(15-x); and a = 11.538(1) ?, b = 15.288(2) ?, c = 15.740(2) ?, and γ = 90.23(1)° for Ho?S(15-x), respectively. The structure consists of an alternating stacking of puckered [RES] (RE, rare-earth metals) double slabs and planar sulfur layers along [001]. The planar sulfur layers have a complex arrangement of S?2? dinuclear dianions, isolated S2? ions, and vacancies. All compounds contain trivalent rare-earth metal ions, for Tb?S(15-x) and Dy?S(15-x) antiferromagnetic order was found at T(N) = 5.4(2) K and 3.8(1) K, respectively. Short wavelength cutoff optical band gaps of 1.6 to 1.7 eV were determined.  相似文献   

16.
Nitrogen-rich 5-(1-methylhydrazinyl)tetrazole (1, MHT) was synthesized by using a straightforward method. White plate crystals of 1 were isolated in acetonitrile and crystallized in the monoclinic system P2(1)/c (# 14) (a = 3.8713(18) ?, b = 12.770(6) ?, c = 9.974(5) ?, α = 90°, β = 93.397(6)°, γ = 90°, V = 492.3(4) ?(3), Z = 4). The reactions of Cu(II) and Ag(I) ions in aqueous solution with 1 were investigated and found to form two complexes under mild conditions. The crystal structures of 2 and 3 are discussed with respect to the coordination mode of the MHT anion. Thermal stabilities were determined from differential scanning calorimetry (DSC) combined with thermogravimetric analysis (TGA) tests. Impact sensitivity was determined by BAM standards showing that these MHT salts are insensitive to impact (>40 J) confirmed by UN standards. The energies of combustion of 1-3 were determined using oxygen bomb calorimetry values and were used to obtain the corresponding enthalpies of formation. Combined with these data above, the neutral MHT is an attractive nitrogen-rich ligand for metallic energetic materials. Its copper and silver coordinated complexes are of interest as potential "green" metal energetic materials with high thermal stability as well as low sensitivity to impact and a high molar enthalpy of formation.  相似文献   

17.
New precursors to potentially conductive noninteger oxidation state (NIOS) compounds based on metal complexes [ML(2)](n)()(-) [M = Ni, Pd, Pt; L = 5,6-dihydro-1,4-dithiin-2,3-dithiolato (dddt(2)(-)), 5,7-dihydro-1,4,6-trithiin-2,3-dithiolato (dtdt(2)(-)), and 2-thioxo-1,3-dithiole-4,5-dithiolato (dmit(2)(-)); n = 2, 1, 0] have been investigated. Complexes of the series (NR(4))[ML(2)] (R = Me, Et, Bu; L = dddt(2)(-), dtdt(2)(-)) have been isolated and characterized, and the crystal structure of (NBu(4))[Pt(dtdt)(2)] (1) has been determined {1 = C(24)H(44)NPtS(10), a = 12.064(2) ?, b = 17.201(3) ?, c = 16.878(2) ?, beta = 102.22(2) degrees, V = 3423(1) ?(3), monoclinic, P2(1)/n, Z = 4}. Oxidation of these complexes affords the corresponding neutral species [ML(2)](0). Another series of general formula (cation)(n)()[M(dmit)(2)] [cation = PPN(+), BTP(+), and (SMe(y)()Et(3)(-)(y)())(+) with y = 0, 1, 2, and 3, n = 2, 1, M = Ni, Pd] has also been studied. All of these (cation)(n)()[M(dmit)(2)] complexes have been isolated and characterized [with the exception of (cation)[Pd(dmit)(2)] for cation = (SMe(y)()Et(3)(-)(y)())(+)]. The crystal structures of (PPN)[Ni(dmit)(2)].(CH(3))(2)CO (2) and (SMeEt(2))[Ni(dmit)(2)] (3) have been determined {2 = C(45)H(36)NNiS(10)P(2)O, a = 12.310(2) ?, b = 13.328(3) ?, c = 15.850(3) ?, alpha = 108.19(3) degrees, beta = 96.64(2) degrees, gamma = 99.67(2) degrees, V = 2373(1) ?(3), triclinic, P&onemacr;, Z = 2; 3 = C(11)H(13)NiS(11), a = 7.171(9) ?, b = 17.802(3) ?, c = 16.251(3) ?, beta = 94.39(4) degrees, V = 2068(2) ?(3), monoclinic, P2(1)/n, Z = 4} NIOS salts derived from the preceding precursors were obtained by electrochemical oxidation. Electrochemical studies of the [M(dddt)(2)] complexes show that they may be used for the preparation of NIOS radical cation salts and [M(dddt)(2)][M'(dmit)(2)](x)() compounds, but not for the preparation of (cation)[M(dddt)(2)](z)() NIOS radical anion salts. The electrochemical oxidation of the [M(dtdt)(2)](-) complexes always yields the neutral [M(dtdt)(2)](0) species. The crystal structure of [Pt(dddt)(2)][Ni(dmit)(2)](2) (4) has been determined and is consistent with the low compaction powder conductivity (5 x 10(-)(5) S cm(-)(1) at room temperature) {4 = C(20)H(8)Ni(2)PtS(28), a = 20.336(4) ?, b = 7.189(2) ?, c = 14.181(2) ?, beta = 97.16(2) degrees, V = 2057(1) ?(3), monoclinic, C2/m, Z = 2}. The crystal structures of the semiconducting NIOS compounds (BTP)[Ni(dmit)(2)](3) (5) and (SMe(3))[Ni(dmit)(2)](2) (6) have been determined {5 = C(43)H(22)PNi(3)S(30), a = 11.927(2) ?, b = 24.919(2) ?, c = 11.829(3) ?, alpha = 93.11(1) degrees, beta = 110.22(1) degrees, gamma = 83.94(1) degrees, V = 3284(1) ?(3), triclinic, P&onemacr;, Z = 2; 6 = C(15)H(9)Ni(2)S(21), a = 7.882(1) ?, b = 11.603(2) ?, c = 17.731(2) ?, alpha = 77.44(1) degrees, beta = 94.39(1) degrees, gamma = 81.27(1) degrees, V = 1563(1) ?(3), triclinic, P&onemacr;, Z = 2}. The parent compound (SEt(3))[Ni(dmit)(2)](z) (unknown stoichiometry) is also a semiconductor with a single-crystal conductivity at room temperature of 10 S cm(-)(1). By contrast, the single-crystal conductivity at room temperature of (SMeEt(2))[Pd(dmit)(2)](2) (7) is rather high (100 S cm(-)(1)). 7 behaves as a pseudometal down to 150 K and undergoes an irreversible metal-insulator transition below this temperature. The crystal structure of 7 has been determined {7 = C(17)H(13)NPd(2)S(21), a = 7.804(4) ?, b = 36.171(18) ?, c = 6.284(2) ?, alpha = 91.68(4) degrees, beta = 112.08(4) degrees, gamma = 88.79(5) degrees, V = 1643(1) ?(3), triclinic, P&onemacr;, Z = 2}. The electronic structure of (SMeEt(2))[Pd(dmit)(2)](2) (7) and the possible origin of the metal-insulator transition at 150 K are discussed on the basis of tight-binding band structure calculations.  相似文献   

18.
Su T  Xing H  Xu J  Yu J  Xu R 《Inorganic chemistry》2011,50(3):1073-1078
Three new open-framework metal borophosphates, [Na(6)Co(3)B(2)P(5)O(21)Cl]·H(2)O (JIS-4), K(5)Mn(2)B(2)P(5)O(19)(OH)(2) (JIS-5), (NH(4))(8)[Co(2)B(4)P(8)O(30)(OH)(4)] (JIS-6), have been prepared under ionothermal conditions using ionic liquid 1-ethyl-3-methylimidazolium ([Emim]Br) as the solvent. They are the first examples of metalloborophosphate prepared by the ionothermal method. Their structures are determined by single-crystal X-ray diffraction. The 3-D open framework of JIS-4 is made of CoO(5)Cl octahedra, CoO(5) square pyramids, and PO(4) and BO(4) tetrahedra forming 12-ring channels along the [010] direction. It is noted that JIS-4 is the first 3-D open-framework structure in the family of borophosphate with the B/P ratio of 2/5, which features a borophosphate cluster anionic partial structure. Such cluster anionic partial structures connect with MnO(6) octahedra and MnO(5) trigonal bipyramids resulting in the formation of the 2-D layer structure of JIS-5 with the same B/P ratio as JIS-4. The 2-D layer structure of JIS-6 belongs to the largest family of borophosphate with a B/P ratio of 1/2 which features a unique 1-D chain anionic partial structure. Crystal data for JIS-4, orthorhombic, Pnma, a = 14.0638(8) ?, b = 9.8813(7) ?, c = 14.0008(10) ?, V = 1945.7(2) ?(3), and Z = 2; for JIS-5, monoclinic, P2(1)/n, a = 14.4939(3) ?, b = 9.2539(3) ?, c = 14.8031(4) ?, β = 101.4600(10)°, V = 1945.88(9) ?(3), and Z = 4. For JIS-6, triclinic, P1, a = 9.6928(3) ?, b = 9.8747(3) ?, c = 10.0125(2) ?, α = 62.057(2)°, β = 82.456(2)°, γ = 76.095(2)°, V = 821.60(4) ?(3), and Z = 1.  相似文献   

19.
Two new binuclear metal complexes supported by 1,4,8-triazacycloundecane (tacud) are reported. [Fe(2)(tacud)(2)(μ-Cl)(2)Cl(2)] (1) and [Mn(2)(tacud)(2)(μ-Cl)(2)Cl(2)] (2) are isomorphs consisting of bis(μ-chloro) bridged metal centers along with terminal chloro groups and tacud ligands. Both compounds 1 and 2 crystallize in the P1 space group. For 1, a = 7.7321(12) ?, b = 7.8896(12) ?, c = 11.4945(17) ?, α = 107.832(2)°, β = 107.827(2)°, γ = 92.642(2)°, V = 627.85(17) ?(3) and Z = 1. For 2, a = 7.7607(12) ?, b = 7.9068(12) ?, c = 11.6111(18) ?, α = 108.201(2)°, β = 108.041(2)°, γ = 92.118(3)°, V = 636.47(17) ?(3) and Z = 1. Variable-temperature and variable-field magnetic susceptibility studies on 1 indicate the presence of weak ferromagnetic interactions between the high-spin iron(ii) centers in the dimer (J = + 1.6 cm(-1)) and the crystalline field anisotropy of the ferrous ion (D = - 2.8, E = - 0.1 cm(-1)). Variable temperature magnetic susceptometry studies on 2 indicate that weak antiferromagnetic coupling exists between the manganese(ii) centers (J = - 1.8 cm(-1)). Compounds 1 and 2 retain their dinuclearity in weakly coordinating or low polarity solvents, while both become mononuclear in solvents such as methanol.  相似文献   

20.
The metal-organic framework [Cu(ta)(2)] (Hta = 1H-1,2,3-triazole), containing Jahn-Teller active Cu(II) ions and 1,2,3-triazolate ligands, is prepared under solvothermal reaction conditions. The compound shows a reversible phase transition from the tetragonal crystal system (α-[Cu(ta)(2)]: space group I4(1)/amd (no. 141), a = 11.8447(7) ?, c = 18.9782(13) ?, V = 2662.6(3) ?(3)) to the cubic crystal system (β-[Cu(ta)(2)]: space group Fd3m (no. 227), a = 17.4416(15) ?, V = 5305.9(8) ?(3)) within the temperature range of 120-160 °C. Both [Cu(ta)(2)] polymorphs have identical bonding topologies that might be described as fully condensed Kuratowski-type pentanuclear secondary building units of local T(d) point group symmetry in which four Cu(II) ions occupy the vertices of an imaginary tetrahedron. α-[Cu(ta)(2)], as opposed to the high-temperature β-phase, shows a strong tetragonal Jahn-Teller distortion of CuN(6) coordination octahedra. The compounds are characterized by elemental and thermogravimetric analyses, single crystal and powder X-ray diffraction, FTIR-, UV-vis and fluorescence spectroscopy. Magnetic susceptibility investigations reveal two different Cu(II) sites at a ratio of 1 : 2, in agreement with the solid state structure of [Cu(ta)(2)]. At low temperatures the formation of antiferromagnetically coupled Cu(II) dimers is observed, leading to a spin frustration of roughly 1/3 of all magnetically active Cu(II) sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号