首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cruz AC  Miller ND  Willis MC 《Organic letters》2007,9(21):4391-4393
A catalyst generated from Pd(OAc)2 and dppp is effective for the direct intramolecular arylation of alkenyl triflates. Conjugated alkene-arene-containing carbocycles are produced in good yield. The process tolerates a variety of aryl substituents as well a simple heteroaryl groups. Electron-deficient aryl rings deliver faster reactions.  相似文献   

2.
Ligand-free Pd(OAc)(2) was found to catalyze very efficiently the direct arylation of imidazo[1,2-a]pyridines at C3 under very low catalyst concentration. The reaction can be performed employing as little as 0.1-0.01 mol % catalyst with electron-deficient and some electron-excessive aryl bromides.  相似文献   

3.
The use of a temporary protection by a chloro group at C5 of pyrazoles allows the synthesis of the 4-arylated pyrazoles, which were previously inaccessible by palladium-catalyzed direct arylation, with complete regioselectivity and in high yields using in most cases as little as 0.5-0.1 mol % Pd(OAc)(2) as the catalyst with electron-deficient aryl bromides. Moreover, from 5-chloro-1,3-dimethylpyrazole, sequential catalytic C4 arylation, dechlorination, catalytic C5 arylation reactions allowed the synthesis of a 4,5-diarylated pyrazole derivative.  相似文献   

4.
Aryl triflates were found to be suitable partners for the palladium catalyzed direct arylation of heteroaromatics via C-H activation-functionalization. The reaction conditions and the catalyst have a determining influence on the yields. The system combining PPh3 and Pd(OAc)2 using KOAc as base and DMF as solvent promotes the selective 2- or 5-arylations in moderate to high yields. Several heteroaromatics such as furan, thiophene, thiazole or oxazole derivatives have been employed successfully. The electronic properties of the aryl triflates also have a decisive influence on the yields of the coupling products. Electron-rich aryl triflates gave satisfactory results, whereas the electron-poor ones led to the formation of phenols.  相似文献   

5.
The palladium-catalyzed direct arylation of SO(2)R-substituted thiophene derivatives was found to proceed regioselectively at C5 and in high yields using a variety of aryl bromides and as low as 0.5-0.1 mol % of phosphine-free Pd(OAc)(2) as the catalyst. For these reactions, sulfonyls, sulfonamides, or even a sulfonic ester as the thiophene substituents were successfully employed.  相似文献   

6.
Lafrance M  Shore D  Fagnou K 《Organic letters》2006,8(22):5097-5100
New reaction conditions are described that enable the direct arylation of pentafluorobenzene with sterically encumbered aryl bromides and aryl chlorides. These reactions occur in high yield and under mild conditions. Notably, the reactions can be performed at 80 degrees C in isopropyl acetate with a catalyst generated by the in situ mixing of Pd(OAc)(2) and S-Phos. The enhanced scope of these transformations should further reduce the need to use pentafluorophenylboronic acid in the construction of perfluoroarenes. [reaction: see text]  相似文献   

7.
Direct triarylation and sequential triarylation reactions of simple azoles catalyzed by [Pd(phen)(2)]PF(6) are described. Simple azoles, such as N-methylimidazole, thiazole, and oxazole, were observed to undergo triaryaltion reactions even at their C4 positions when treated with aryl iodides in the presence of [Pd(phen)(2)]PF(6) as a catalyst and a stoichiometric amount of Cs(2)CO(3) in DMA at 150 °C. Using excess amounts of azoles, selective C5 monoarylation was achieved by using the same catalytic system. Subsequent efforts demonstrated that C5 arylated azoles undergo exclusive C2 arylation using [Pd(phen)(2)]PF(6) as the catalyst with galvinoxyl as an additive. Finally, unprecedented C4 arylation reactions of 2,5-diaryl-azoles occur by using the new catalytic system to give the corresponding triarylated products in good to excellent yields. The results of mechanistic studies suggest that the C2 arylation process takes place by way of an electrophilic aromatic substitution (S(E)Ar) palladation pathway, while arylation reactions at the C4 position occur via a S(E)Ar palladation and/or radical mechanism. Finally, a concise, three-step synthesis of the Tie-2 Tyrosine Kinase Inhibitor has been executed starting with commercially available N-methylimidazole by a route that employs the new sequential arylation process.  相似文献   

8.
[reaction: see text] Benzylboranes are noticeably uncommon partners within Suzuki-Miyaura coupling reactions. B-Benzyl-9-BBN was successfully coupled to a range of aryl/heteroaryl bromides, chlorides, and triflates to give pharmacologically important methylene-linked biaryl structures. Activated, deactivated, and sterically hindered substrates were successfully coupled in high yield using Pd(PPh(3))(4) or Pd(OAc)(2) with SPhos as the catalyst system.  相似文献   

9.
The simple ligand-free direct arylation of quinones with aryl halides applying Pd(OAc)2 as a catalyst in accordance with Heck reaction was studied. This reaction provided a simple and efficient synthetic approach to efficient inhibitors of β-secretase aryl-substituted quinones.  相似文献   

10.
Novel nickel-based catalytic systems for the C-H arylation of azoles with haloarenes and aryl triflates have been developed. We have established that Ni(OAc)(2)/bipy/LiOtBu serves as a general catalytic system for the coupling with aryl bromides and iodides as aryl electrophiles. For couplings with more challenging electrophiles, such as aryl chlorides and triflates, the Ni(OAc)(2)/dppf (dppf = 1,1'-bis(diphenylphosphino)ferrocene) system was found to be effective. Thiazoles, benzothiazoles, oxazoles, benzoxazoles, and benzimidazoles can be used as the heteroarene coupling partner. Upon further investigation, we discovered a new protocol for the present coupling using Mg(OtBu)(2) as a milder and less expensive alternative to LiOtBu. Attempts to reveal the mechanism of this nickel-catalyzed heterobiaryl coupling are also described. This newly developed methodology has been successfully applied to the syntheses of febuxostat (a xanthine oxidase inhibitor that is effective for the treatment of gout and hyperuricemia), tafamidis (effective for the treatment of TTR amyloid polyneuropathy), and texaline (a natural product having antitubercular activity).  相似文献   

11.
《化学:亚洲杂志》2017,12(21):2819-2826
Mono‐, di‐, tri‐, and tetraarylated thieno[3,2‐b ]thiophenes were synthesized by direct site‐selective Pd‐catalyzed C−H activation reactions with various aryl bromides in the presence of a phosphine‐free Pd(OAc)2/KOAc catalyst system in N ,N ‐dimethylacetamide (DMAc). The arylation of 2‐arylthieno[3,2‐b ]thiophene took place at the C3 position if the 2‐aryl substituents possessed electron‐withdrawing groups and at the C5 position if they were bulky and possessed electron‐donating groups.  相似文献   

12.
Unlike traditionally used acyclic 1,2-disubstituted alkenes, the reaction of alpha,beta-unsaturated phenyl sulfones with aryl iodides under Heck reaction conditions (Pd(OAc)(2) as catalyst, Ag(2)CO(3) as base in DMF at 120 (0)C) takes place mainly by a cascade process, involving one unit of the alkene and three units of the aryl iodide, to afford a substituted 9-phenylsulfonyl-9,10-dihydrophenanthrene. The dominant formation of this 3:1 coupling product, instead of the Heck trisubstituted olefin, shows that aromatic C-H bond activation processes can compete with the usually fast syn beta-hydrogen elimination step in the Heck arylation of an acyclic olefin. The structural scope of this palladium-catalyzed cascade arylation of alpha,beta-unsaturated sulfones has proved to be wide with regard to substitution at the beta-position (alkyl, aryl, or alkenyl substitution), substitution at the sulfone unit (alkyl or phenyl sulfones), and configuration at the CdoublebondC bond (trans or cis). Moreover, although less favored than in the case of the arylation of alpha,beta-unsaturated sulfones, similarly substituted 9,10-dihydrophenanthrenes have also been obtained in the case of alpha,beta-unsaturated phosphine oxides and alpha,beta-unsaturated phosphonate esters. A Pd(0)-Pd(II)-Pd(IV) mechanistic pathway involving the successive formation of highly electrophilic sigma-alkylpalladium intermediates and palladacycles is proposed for this multicomponent arylation.  相似文献   

13.
Pd-catalysed procedures for the direct Heck arylation of diethyl vinylphosphonate with various aryl or heteroaryl halides toward the synthesis of diethyl 2-(aryl)vinylphosphonates are reported. Several homogeneous catalytic systems (i.e. Herrmann palladacycle, Nolan (NHC)-palladium catalyst, Pd(OAc)2/PPh3) were used and compared within the study. High conversions and selectivities were achieved under optimised conditions (2 mol% [Pd], NMP, K2CO3, 140 °C) whatever the homogeneous catalyst used.  相似文献   

14.
Pd(OAc)2 was found to catalyze very efficiently the direct arylation of imidazo[1,2‐b]pyridazine at C3‐position under a very low catalyst loading and phosphine‐free conditions. The reaction can be performed in very high TOFs and TONs employing as little as 0.1–0.05 mol % catalyst using a wide range of aryl bromides. In addition, some electron‐deficient aryl chlorides were also found to be suitable substrates. Moreover, 31 examples of the cross couplings were reported using green, safe, and renewable solvents, such as pentan‐1‐ol, diethylcarbonate or cyclopentyl methyl ether, without loss of efficiency.  相似文献   

15.
Herein, we have formulated the concept of systematic derivatization of a structural motif via C-H bond functionalization. This concept may not only serve as a blueprint for new strategies in diversity synthesis but also provide systematic guidance for the identification of unsolved and important synthetic challenges. To illustrate this point, 2-phenylimidazole was selected as the core motif for this study, a choice inspired by numerous azole-based synthetics, including pharmaceuticals (compound SB 202190), and also fluorescent and chemiluminescent probes. We were able to show that systematic and comprehensive arylation of the 2-phenylimidazole core was feasible, and in the context of this study new arylation methods were developed. The direct 4-arylation of free 2-phenylimidazole was achieved with iodoarenes as the aryl donors in the presence of palladium catalyst (Pd/Ph(3)P) and magnesium oxide as the base. A complete switch from C-4 to C-2' arylation was accomplished using a ruthenium catalyst [CpRu(Ph(3)P)(2)Cl] and Cs(2)CO(3). The corresponding transformations for (N,2)-diphenylimidazole (C-5 and C-2' arylation) were accomplished via the palladium-based method [Pd(OAc)(2)/Ph(3)P/Cs(2)CO(3)] and a rhodium-catalyzed procedure [Rh(acac)(CO)(2)/Cs(2)CO(3)], respectively. All of the arylation methods described herein demonstrated broad synthetic scope, high efficiency, and exclusive selectivity. Furthermore, these new methods proved to be orthogonal to one another and applicable to sequential arylation schemes. With these methods in hand, arrays of arylated imidazoles may now be accessed in a direct manner from 2-phenylimidazole. This strategy stands in sharp contrast to a traditional approach, wherein a distinct and multistep synthesis would be required for each analogue.  相似文献   

16.
Indanones and 2-cyclopentenones have been successfully prepared in good to excellent yields by the palladium-catalyzed carbonylative cyclization of unsaturated aryl iodides and dienyl triflates, iodides, and bromides, respectively. The best results are obtained by employing 10 mol % of Pd(OAc)(2), 2 equiv of pyridine, 1 equiv of n-Bu(4)NCl, 1 atm of CO, a reaction temperature of 100 degrees C, and DMF as the solvent. This carbonylative cyclization is particularly effective on substrates that contain a terminal olefin. The proposed mechanism for this annulation includes (1) Pd(OAc)(2) reduction to the active palladium(0) catalyst, (2) oxidative addition of the organic halide or triflate to Pd(0), (3) coordination and insertion of carbon monoxide to produce an acylpalladium intermediate, (4) acylpalladation of the neighboring carbon-carbon double bond, (5) reversible palladium beta-hydride elimination and re-addition to form a palladium enolate, and (6) protonation by H(2)O to produce the indanone or 2-cyclopentenone.  相似文献   

17.
A convenient approach has been developed to prepare polyfluorobiphenyl by Pd(OAc)2/PCy3‐catalyzed direct arylation of polyfluoroarenes with aromatic halides in the presence of Cs2CO3 as base and toluene as solvent. In most cases, the desired arylated products of aromatic bromides were obtained in good to excellent yield at 80°C, and aryl chlorides also gave modest to good yields of arylated products at 110°C. According to this efficient C―C bondforming method, polyfluorobiphenyl liquid crystal compounds were prepared by Pd‐catalyzed direct arylation reactions of polyfluoroarenes with long alkyl chain substituted aryl bromides in 62–96% yield. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Metalloenzymes are essential proteins with vital activity that promote high-efficiency enzymatic reactions. To ensure catalytic activity, stability, and reusability for safe, nontoxic, sustainable chemistry, and green organic synthesis, it is important to develop metalloenzyme-inspired polymer-supported metal catalysts. Here, we present a highly active, reusable, self-assembled catalyst of poly(imidazole-acrylamide) and palladium species inspired by metalloenzymes and apply our convolution methodology to the preparation of polymeric metal catalysts. Thus, a metalloenzyme-inspired polymeric imidazole Pd catalyst (MEPI-Pd) was readily prepared by the coordinative convolution of (NH(4))(2)PdCl(4) and poly[(N-vinylimidazole)-co-(N-isopropylacrylamide)(5)] in a methanol-water solution at 80 °C for 30 min. SEM observation revealed that MEPI-Pd has a globular-aggregated, self-assembled structure. TEM observation and XPS and EDX analyses indicated that PdCl(2) and Pd(0) nanoparticles were uniformly dispersed in MEPI-Pd. MEPI-Pd was utilized for the allylic arylation/alkenylation/vinylation of allylic esters and carbonates with aryl/alkenylboronic acids, vinylboronic acid esters, and tetraaryl borates. Even 0.8-40 mol ppm Pd of MEPI-Pd efficiently promoted allylic arylation/alkenylation/vinylation in alcohol and/or water with a catalytic turnover number (TON) of 20,000-1,250,000. Furthermore, MEPI-Pd efficiently promoted the Suzuki-Miyaura reaction of a variety of inactivated aryl chlorides as well as aryl bromides and iodides in water with a TON of up to 3,570,000. MEPI-Pd was reused for the allylic arylation and Suzuki-Miyaura reaction of an aryl chloride without loss of catalytic activity.  相似文献   

19.
The asymmetric alpha-arylation of ketones with aryl triflates is described, and the use of this electrophile with nickel and palladium catalysts containing a segphos derivative increases substantially the scope of highly enantioselective arylations of ketone enolates. The combination of aryl triflates as reactant, difluorphos as ligand, palladium catalysts for reactions of electron-neutral or electron-rich aryl triflates, and nickel catalysts for reactions of electron-poor aryl triflates led to a series of alpha-arylations of tetralone, indanone, cyclopentanone, and cyclohexanone derivatives. Enantioselectivities ranged from 70% to 98% with 10 examples over 90%. Systematic studies on these alpha-arylations have revealed a number of factors that affect enantioselectivity. Ligands containing biaryl backbones with smaller dihedral angles generate catalysts that react with higher enantioselectivity than related ligands with larger dihedral angles. In addition, faster rates for reactions of aryl triflates versus those for reactions of aryl bromides allow the alpha-arylations of aryl triflates to be conducted at lower temperatures, and this lower temperature improves enantioselectivity. Finally, studies that compare the enantioselectivities of catalytic reactions to those of stoichiometric reactions of isolated [(segphos)Pd(Ar)(Br)], [(segphos)Pd(Ar)(I)], and [(segphos)Ni(C6H4-4-CN)Br] suggest that catalyst decomposition affects enantioselectivity.  相似文献   

20.
The first general method for the palladium-catalyzed Suzuki-Miyaura and carbonyl enolate coupling of unactivated aryl arenesulfonates was developed utilizing XPhos, 1, and Pd(OAc)2. This is of significant interest because aryl tosylates and aryl benzenesulfonates are more easily handled and considerably less expensive than aryl triflates. This catalyst system effects the coupling of a variety of aryl, heteroaryl, and extremely hindered arylboronic acids with different aryl tosylates, under mild conditions. The same catalyst was employed in the first carbonyl enolate coupling of aryl arensulfonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号