首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Localized surface plasmon resonance (LSPR) by silver nanoparticles that are photochemically incorporated into an electrode-supported TiO(2) nanoparticulate framework enhances the extinction of a subsequently adsorbed dye (the ruthenium-containing molecule, N719). The enhancement arises from both an increase in the dye's effective absorption cross section and a modest increase in the framework surface area. Deployment of the silver-modified assembly as a photoanode in dye-sensitized solar cells leads to light-to-electrical energy conversion with an overall efficiency of 8.9%. This represents a 25% improvement over the performance of otherwise identical solar cells lacking corrosion-protected silver nanoparticles. As one would expect based on increased dye loading and electromagnetic field enhanced (LSPR-enhanced) absorption, the improvement is manifested chiefly as an increase in photocurrent density ascribable to improved light harvesting.  相似文献   

2.
We have developed an efficient and novel polyene-dye-sensitized nanocrystalline TiO2 solar cells producing a 6.8% solar energy-to-electricity conversion efficiency (eta) under AM 1.5 irradiation (100 mW cm(-2)): short-circuit current density (Jsc), 12.9 mA cm(-2), open-circuit photovoltage (Voc), 0.71 V, fill factor (ff), 0.74.  相似文献   

3.
4.
A highly efficient organic sensitizer for dye-sensitized solar cells   总被引:2,自引:0,他引:2  
We have synthesized a highly efficient organic dye for a dye-sensitized solar cell; the overall solar-to-energy conversion efficiency was 9.1% at AM 1.5 illumination (100 mW cm(-2)): short-circuit current density (J(sc)) = 18.1 mA cm(-2), open circuit photovoltage (V(oc)) = 743 mV and fill factor (ff) = 0.675.  相似文献   

5.
Four novel tetrahydroquinoline dyes by inserting isophorone and/or thiophene moieties as π bridge between the electron donating unit of substituted tetrahydroquinoline and the electron withdrawing unit of cyano carboxylic acid have been synthesized and successfully applied to dye-sensitized solar cells. Among them, DSCs sensitized by HYTIC, which shows the simplest molecular structure, exhibit improved efficiency of 7.0%. This by now is the highest efficiency for the reported tetrahydroquinoline sensitizers and comparable to the performance of N719-sensitized solar cells under the conditions employed here.  相似文献   

6.
Ruthenocycle bis(4,4′-dicarboxy-2,2′-bipyridine)(2-phenylpyridine-2C,N)ruthenium(II) hexafluorophosphate was used as a sensitizer in a dye-sensitized solar cell (DSSC) based on nanocrystalline TiO2, which was applied onto a conducting substrate. Its electrochemical and spectral characteristics were studied. It was found that, when the DSSC was illuminated with visible light of power 35 mW/cm2, the short-circuit current density was 11.6 mA cm?2 and the open-circuit voltage was 0.49 V. The efficiency (η) of DSSC at a fill factor of 45% was 7.1%. Using the method of modulation spectroscopy of photocurrents and photopotentials, the life time and transit time of electrons were found to be 7 and 5 ms, respectively, and the diffusion coefficient of electrons was found to be 10?5 cm2 s?1. Comparing the life and transit times of electron, it was concluded that the photogenerated electrons had time to reach the conducting substrate during their life time.  相似文献   

7.
Journal of Solid State Electrochemistry - In the present study, a novel cost-effective and efficient configuration of dye-sensitized solar cell (DSSC) with zinc oxide–multi-walled carbon...  相似文献   

8.
We fabricated ZnO photoelectrodes at room temperature by doctor-blading ZnO gel; the adequate interparticle connection and the effective ammonia activation process improved the flexible DSC's efficiency to 3.8% (under 100 mW cm(-2)).  相似文献   

9.
Use of a new ionic liquid crystal, 1-dodecyl-3-methylimidazolium iodide, and iodine as an electrolyte of dye-sensitized solar cells leads to a high short circuit photocurrent density and a high light-to-electricity conversion efficiency, due to a self-assembled structure of the imidazolium cations, resulting in high conductivity of the electrolyte.  相似文献   

10.
We designed highly efficient porphyrin sensitizers with two phenyl groups at meso-positions of the macrocycle bearing two ortho-substituted long alkoxyl chains for dye-sensitized solar cells; the ortho-substituted devices exhibit significantly enhanced photovoltaic performances with the best porphyrin, LD14, showing J(SC) = 19.167 mA cm(-2), V(OC) = 0.736 V, FF = 0.711, and overall power conversion efficiency η = 10.17%.  相似文献   

11.
Porous carbon counter electrodes have been fabricated at low temperature by coating an organic binder free carbon slurry onto F-doped tin oxide conducting glass. The carbon slurry is prepared by ball-milling a dispersion of activated carbon in aqueous SnCl4 solution. During ball-milling, SnCl4 hydrolyzes and transforms into stannic acid gel, which acts as an inorganic “glue” to connect the carbon particles during film preparation. Dye-sensitized solar cells employing this carbon electrode achieve efficiency as high as 6.1% which is comparable to that of the cells using sputtering Pt as counter electrode.  相似文献   

12.
TiO2 nanotube arrays were grown on Ti foil in mixed electrolyte by the anodizing process. TiO2 nanotube arrays were immersed in the TiCl4 solution to improve the photocurrent by enhanced charge transfer between TiO2 and dye molecules on the activity surface. Internal resistance of dye-sensitized solar cells (DSSC) was measured by impedance spectroscopy measurements. Backside illuminated DSSC with TiCl4-treated TiO2 nanotubes exhibited a conversion efficiency of 1.45% and showed improved electron transfer.  相似文献   

13.
N-cetylpyridinium iodide (N-CPI) as a new electric additive for enhancing photovoltaic performance of the dye-sensitized solar cell (DSSC) was studied. It showed high efficiency for enhancing both the open-circuit voltage and the short-circuit current density of DSSC when the suitable amount of N-CPI as 0.02 M was added in liquid electrolyte. The energy conversion efficiency of DSSC increased from 4.429% to 6.535%, with 47.55% enhancement. Therefore, it is a highly efficient electric additive for DSSC. The intrinsic reason is owing to the special molecular structure of N-CPI, which contains two different polarity groups. As a surfactant, N-CPI could form ordered arrangement in liquid electrolyte, which affects the diffusing ability and the redox reaction of I?/I 3 ? , and further affects the photovoltaic performance of DSSC.  相似文献   

14.
报道了一种新型染料敏化太阳电池电解质添加剂——N-十六烷基吡啶碘(N-CPI).往电解质中添加0.02MN-CPI,能同时提高染料敏化太阳电池(DSSC)的短路电流和开路电压,光电转换效率也由4.429%提高到6.535%,增幅高达47.55%,由此可见,N-CPI是一种高效电解质添加剂.N-CPI这种功能来源于其双极性基团的特殊分子结构,这种结构使N-CPI在电解质中如表面活性剂那样形成有序分布,影响I-/I3-的扩散和氧化还原性能,进而影响DSSC的光电性能.  相似文献   

15.
16.
A double-sided, transparent conducting and flexible dye-sensitized solar cell (DSSC) was developed. The device comprised two metal electrodes whereby the working electrode consisted of highly ordered titania (TiO2) nanotube arrays. The maximum conversion efficiency of the DSSC was 5.1% and decreased by 6% under a 90° bending. Surface treatment of the TiO2 nanotube arrays in niobium isopropoxide solution lifted the conversion efficiency to 6.8%.  相似文献   

17.
Journal of Solid State Electrochemistry - Hierarchically nano-structured ZnO microspheres have been synthesized solvothermally at variable reaction times (6, 12, 36, and 48 h) by using...  相似文献   

18.
Three new triethoxysilanes bearing quaternary ammonium alkyl iodides are reported, N,N,N-triethyl-3-(triethoxysilyl)propan-1-aminium iodide 1, N,N,N-triheptyl-3-(triethoxysilyl)propan-1-aminium iodide 2 and N,N,N-tridodecyl-3-(triethoxysilyl)propan-1-aminium iodide 3. 1H and 13C NMR spectroscopy and electrospray mass spectrometry were used to confirm the synthesis of pure products. Electrolytes based on these ionic liquids were developed and their performance in dye-sensitized solar cells (DSSCs) evaluated. The electrolytes incorporated 1 and 2 (in 30–60 wt%) as iodide sources together with I2 (0.08 M), 0.1 M guanidinium thiocyanate and 0.5 M tert-butylpyridine in acetonitrile (AN); and I2 (0.15 M) and N-methylbenzimidazole (0.5 M) for 2-methoxyproprionitrile (MPN) as co-solvent. Testing of DSSCs to analyze the influence of chain length (ethyl and heptyl) on cell efficiency revealed that, for silanes concentration of 1 M, electrolyte B (based on 2 in AN) and electrolyte C (based on 1 in MPN) gave the best cell efficiency at simulated full sunlight (AM 1.5, 1000 W m−2) illumination (5.0–5.3%). At 0.1 Sunlight (AM 1.5, 100 W m−2), electrolyte B gave the best performance of 8.0%. High open circuit voltages (VOC) of 750–850 mV were achieved for a number of quite efficient cells (5–6%). For silane 2, variation of the I/I2 ratio and total silane content (1–2 M 2) on DSSC efficiency gave a consistent efficiency of 8.0% at 0.1 Sunlight. At full sunlight, the cell efficiency decreased as the silane concentration increased from 1 M (5.0%) to 2 M (3.7%), largely due to a drop in short circuit current.  相似文献   

19.
Nickel phosphide-embedded graphene, prepared by the hydrothermal reaction of red phosphorus, nickel chloride, and graphene oxide in a mixture of ethylene glycol-water, is investigated as the counter electrode of DSSCs. It is demonstrated that the DSSC with the nickel phosphide-embedded graphene as the new counter electrode presents an excellent performance competing with that of the Pt electrode.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号