首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of dibenzo-18-crown-6 (DB18C6) complexes with alkali metal ions (Li(+), Na(+), K(+), Rb(+), and Cs(+)) in a cold, 22-pole ion trap. All the complexes show a number of vibronically resolved UV bands in the 36,000-38,000 cm(-1) region. The Li(+) and Na(+) complexes each exhibit two stable conformations in the cold ion trap (as verified by IR-UV double resonance), whereas the K(+), Rb(+), and Cs(+) complexes exist in a single conformation. We analyze the structure of the conformers with the aid of density functional theory (DFT) calculations. In the Li(+) and Na(+) complexes, DB18C6 distorts the ether ring to fit the cavity size to the small diameter of Li(+) and Na(+). In the complexes with K(+), Rb(+), and Cs(+), DB18C6 adopts a boat-type (C(2v)) open conformation. The K(+) ion is captured in the cavity of the open conformer thanks to the optimum matching between the cavity size and the ion diameter. The Rb(+) and Cs(+) ions sit on top of the ether ring because they are too large to enter the cavity of the open conformer. According to time-dependent DFT calculations, complexes that are highly distorted to hold metal ions open the ether ring upon S(1)-S(0) excitation, and this is confirmed by extensive low-frequency progressions in the UVPD spectra.  相似文献   

2.
A ditopic ion-pair receptor (1), which has tunable cation- and anion-binding sites, has been synthesized and characterized. Spectroscopic analyses provide support for the conclusion that receptor 1 binds fluoride and chloride anions strongly and forms stable 1:1 complexes ([1·F](-) and [1·Cl](-)) with appropriately chosen salts of these anions in acetonitrile. When the anion complexes of 1 were treated with alkali metal ions (Li(+), Na(+), K(+), Cs(+), as their perchlorate salts), ion-dependent interactions were observed that were found to depend on both the choice of added cation and the initially complexed anion. In the case of [1·F](-), no appreciable interaction with the K(+) ion was seen. On the other hand, when this complex was treated with Li(+) or Na(+) ions, decomplexation of the bound fluoride anion was observed. In contrast to what was seen with Li(+), Na(+), K(+), treating [1·F](-) with Cs(+) ions gave rise to a stable, host-separated ion-pair complex, [F·1·Cs], which contains the Cs(+) ion bound in the cup-like portion of the calix[4]pyrrole. Different complexation behavior was seen in the case of the chloride complex, [1·Cl](-). Here, no appreciable interaction was observed with Na(+) or K(+). In contrast, treating with Li(+) produces a tight ion-pair complex, [1·Li·Cl], in which the cation is bound to the crown moiety. In analogy to what was seen for [1·F](-), treatment of [1·Cl](-) with Cs(+) ions gives rise to a host-separated ion-pair complex, [Cl·1·Cs], in which the cation is bound to the cup of the calix[4]pyrrole. As inferred from liposomal model membrane transport studies, system 1 can act as an effective carrier for several chloride anion salts of Group 1 cations, operating through both symport (chloride+cation co-transport) and antiport (nitrate-for-chloride exchange) mechanisms. This transport behavior stands in contrast to what is seen for simple octamethylcalix[4]pyrrole, which acts as an effective carrier for cesium chloride but does not operates through a nitrate-for-chloride anion exchange mechanism.  相似文献   

3.
Extraction of alkali metal picrates with N,N'-dibenzyl-18-crown-6 was carried out, with dichloromethane as water-immiscible solvent, as a function [ligand]/[metal cation]. The extractability of metal picrates (Li(+), Na(+), K(+), Rb(+), Cs(+)) was evaluated as a function of [L]/[M(+)]. The extractability of complex cation-picrate ion pairs decreases in this sequence: Li(+)>Rb(+)>Cs(+)>K(+)>Na(+). The overall extraction equilibrium constants (K(ex)) for complexes of N,N'-dibenzyl-18-crown-6 with alkali metal picrates between dichloromethane and water have been determined at 25 degrees C. The values of the extraction constants (logK(ex)) were determined to be 10.05, 6.83, 7.12, 7.83, 6.73 for Li(+), Na(+), K(+), Rb(+) and Cs(+) compounds, respectively. DB186 shows almost 2-fold extractability against Li(+) compared to the other metal picrates, whereas it shows no obvious extractability difference amongst the other metal cations when [L]/[M(+)] is 0.2-1. However, an increasing extractability is observed for Cs(+) when [L]/[M(+)] [1].  相似文献   

4.
Nakamura H  Takagi M  Ueno K 《Talanta》1979,26(10):921-927
An extraction study of alkali metal cations has been made with crown-ether reagents, 4'-picrylaminobenzo-15-crown-5 derivatives (HL). On dissociation in alkaline medium, the orange HL gives the blood-red anion L(-) and extracts alkali metal ions into chloroform as coloured complexes of composition ML.HL or ML. The ease of extraction decreases in the order, K(+) > Rb(+) > Cs(+) > Na(+) > Li(+). The extracted complexes are ML.HL for K(+) and Rb(+), and both ML.HL and ML for Na(+). The Li(+) complex is not extracted. The photometric determination of 10-800 ppm of K(+) is possible in the presence of other alkali and alkaline earth metal ions.  相似文献   

5.
(133)Cs NMR spectroscopy was used to determine the stoichiometry and stability of the Cs(+) ion complex with dibenzo-21-crown-7 (DB21C7) in acetonitrile-dimethylsulfoxide (96.5:3.5, w/w) and nitromethane-dimethylsulfoxide (96.5:3.5, w/w) mixtures. A competitive (133)Cs NMR technique was also employed to probe the complexation of Na(+), K(+), Rb(+), Ag(+), Tl(+), NH(4)(+), Mg(2+), Ba(2+), Hg(2+), Pb(2+) and UO(2)(2+) ions with DB21C7 in the same solvent systems. All the resulting 1:1 complexes in nitromethane-dimethylsulfoxide were more stable than those in acetonitrile-dimethylsulfoxide solution. In both solvent systems, the stability of the resulting complexes was found to vary in the order Rb(+)>K(+) approximately Ba(2+)>Tl(+)>Cs(+)>NH(4)(+) approximately Pb(2+)>Ag(+)>UO(2)(2+)>Hg(2+)>Mg(2+)>Na(+).  相似文献   

6.
Different solvent temperatures with five kinds of counterions are used to investigate solvent effects on the DNA microscopic structure. The dodecamer d (CGCGAATTCGCG) DNA segment is merged into the solvents and its conformation transition is studied with the molecular dynamics simulations in detail. For the simple point charge model of water molecule with Na(+) counterions, as temperature increases from 200 K to 343 K, the duplex DNA changes from stiff B form to a state between A form and B form, which we define as mixed (A-B) structure, with a double helix unwinding. To study the counterions effects, other four alkali cations, Li(+), K(+), Rb(+), or Cs(+) ions, are substituted for Na(+) ions at 298 K and 343 K, respectively. For the cases of Li(+), Rb(+), and Cs(+) ions, the duplex DNA becomes more flexible with sugar configuration changing form C2'-endo to C1'-endo type and the width and depth of minor groove at CpG and GpC steps moving towards A values, as the mass of the counterions decreasing. For the case of K(+) ions, DNA-K(+) interaction widens the width of minor and major grooves at ApA steps and TpT steps, respectively. It seems that the light ions (Li(+) or Na(+)) prefer to interact with the free phosphate oxygen atoms while the heavier ions (Rb(+) and Cs(+)) strongly interact with the base pairs.  相似文献   

7.
Katsuta S  Kanazawa M  Takeda Y  Ouchi M 《Talanta》1999,49(4):785-791
The overall extraction equilibrium constants (K(ex)) of picrates of Li(+), Na(+), K(+), Rb(+), Cs(+), Ag(+), Tl(+), and Sr(2+)with 19-crown-6 (19C6) were determined between benzene and water at 25 degrees C. The K(ex) values were analyzed into the constituent equilibrium constants, i.e. the extraction constant of picric acid, the distribution constant of the crown ether, the formation constant of the metal ion-crown ether complex in water, and the ion-pair extraction constant of the complex cation with the picrate anion. The effects of an extra methylene group of 19C6 on the extraction ability and selectivity are discussed in detail by comparing the constituent equilibrium constants of 19C6 with those of 18-crown-6 (18C6). The K(ex) value of 19C6 for each metal ion is lower than that of 18C6, which is mostly attributed to the higher lipophilicity of 19C6. The extraction ability of 19C6 for the univalent metal ions decreases in the order Tl(+)>K(+)>Rb(+)>Ag(+)>Cs(+)>Na(+)Li(+), which is the same as that observed for 18C6. The difference in logK(ex) between the univalent metals is generally smaller for 19C6 than for 18C6. The extraction selectivity of 19C6 is governed by the selectivity in the ion-pair extraction, whereas that of 18C6 depends on both the selectivities in the ion-pair extraction and in the complexation in water.  相似文献   

8.
Electrolyte ions differ in size leading to the possibility that the distance of closest approach to a charged surface differs for different ions. So far, ions bound as outersphere complexes have been treated as point charges present at one or two electrostatic plane(s). However, in a multicomponent system, each electrolyte ion may have its own distance of approach and corresponding electrostatic plane with an ion-specific capacitance. It is preferable to make the capacitance of the compact part of the double layer a general characteristic of the solid-solution interface. A new surface structural approach is presented that may account for variation in size of electrolyte ions. In this approach, the location of the charge of the outersphere surface complexes is described using the concept of charge distribution in which the ion charge is allowed to be distributed over two electrostatic planes. It was shown that the concept can successfully describe the pH dependent proton binding and the shift in the isoelectric point (IEP) in the presence of variety of monovalent electrolyte ions, including Li(+), Na(+), K(+), Cs(+), Cl(-), NO(-)(3), and ClO(-)(4) with a common set of parameters. The new concept also sheds more light on the degree of hydration of the ions when present as outersphere complexes. Interpretation of the charge distribution values obtained shows that Cl(-) ions are located relatively close to the surface. The large alkali ions K(+), Cs(+), and Rb(+) are at the largest distance. Li(+), Na(+), NO(-)(3), and ClO(-)(4) are present at intermediate positions.  相似文献   

9.
Aiming to solve the problem of simulation of the potential dependent surface Raman spectra of anion containing surface complexes on electrodes, we developed a new simulation model by adding different cations (Li(+), Na(+), K(+), Rb(+) or Cs(+)) attached to the bottom layer of a large metallic cluster while the surface complex sits on the top layer.  相似文献   

10.
The interfacial structure between the muscovite (001) surface and aqueous solutions containing monovalent cations (3 × 10(-3) m Li(+), Na(+), H(3)O(+), K(+), Rb(+), or Cs(+), or 3 × 10(-2) m Li(+) or Na(+)) was measured using in situ specular X-ray reflectivity. The element-specific distribution of Rb(+) was also obtained with resonant anomalous X-ray reflectivity. The results demonstrate complex interdependencies among adsorbed cation coverage and speciation, interfacial hydration structure, and muscovite surface relaxation. Electron-density profiles of the solution near the surface varied systematically and distinctly with each adsorbed cation. Observations include a broad profile for H(3)O(+), a more structured profile for Li(+) and Na(+), and increasing electron density near the surface because of the inner-sphere adsorption of K(+), Rb(+), and Cs(+) at 1.91 ± 0.12, 1.97 ± 0.01, and 2.26 ± 0.01 ?, respectively. Estimated inner-sphere coverages increased from ~0.6 to 0.78 ± 0.01 to ~0.9 per unit cell area with decreasing cation hydration strength for K(+), Rb(+), and Cs(+), respectively. Between 7 and 12% of the Rb(+) coverage occurred as an outer-sphere species. Systematic trends in the vertical displacement of the muscovite lattice were observed within ~40 ? of the surface. These include a <0.1 ? shift of the interlayer K(+) toward the interface that decays into the crystal and an expansion of the tetrahedral-octahedral-tetrahedral layers except for the top layer in contact with solution. The distortion of the top tetrahedral sheet depends on the adsorbed cation, ranging from an expansion (by ~0.05 ? vertically) in 3 × 10(-3)m H(3)O(+) to a contraction (by ~0.1 ?) in 3 × 10(-3) m Cs(+). The tetrahedral tilting angle in the top sheet increases by 1 to 4° in 3 × 10(-3) m Li(+) or Na(+), which is similar to that in deionized water where the adsorbed cation coverages are insufficient for full charge compensation.  相似文献   

11.
The gas phase structures of cationized histidine (His), including complexes with Li(+), Na(+), K(+), Rb(+), and Cs(+), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser, in conjunction with quantum chemical calculations. To identify the structures present in the experimental studies, measured IRMPD spectra are compared to spectra calculated at B3LYP/6-311+G(d,p) (Li(+), Na(+), and K(+) complexes) and B3LYP/HW*/6-311+G(d,p) (Rb(+) and Cs(+) complexes) levels of theory, where HW* indicates that the Hay-Wadt effective core potential with additional polarization functions was used on the metals. Single point energy calculations were carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set. On the basis of these experiments and calculations, the only conformation that reproduces the IRMPD action spectra for the complexes of the smaller alkali metal cations, Li(+)(His) and Na(+)(His), is a charge-solvated, tridentate structure where the metal cation binds to the backbone carbonyl oxygen, backbone amino nitrogen, and nitrogen atom of the imidazole side chain, [CO,N(α),N(1)], in agreement with the predicted ground states of these complexes. Spectra of the larger alkali metal cation complexes, K(+)(His), Rb(+)(His), and Cs(+)(His), have very similar spectral features that are considerably more complex than the IRMPD spectra of Li(+)(His) and Na(+)(His). For these complexes, the bidentate [CO,N(1)] conformer in which the metal cation binds to the backbone carbonyl oxygen and nitrogen atom of the imidazole side chain is a dominant contributor, although features associated with the tridentate [CO,N(α),N(1)] conformer remain, and those for the [COOH] conformer are also clearly present. Theoretical results for Rb(+)(His) and Cs(+)(His) indicate that both [CO,N(1)] and [COOH] conformers are low-energy structures, with different levels of theory predicting different ground conformers.  相似文献   

12.
The relative alkali metal ion (M(+)) affinities (binding energies) between seventeen different amino acids (AA) and the corresponding methyl esters (AAOMe) were determined in the gas phase by the kinetic method based on the dissociation of AA-M(+)-AAOMe heterodimers (M=Li, Na, K, Cs). With the exception of proline, the Li(+), Na(+), and K(+) affinities of the other aliphatic amino acids increase in the order AAAAOMe is already observed for K(+). Proline binds more strongly than its methyl ester to all M(+) except Li(+). Ab initio calculations on the M(+) complexes of alanine, beta-aminoisobutyric acid, proline, glycine methyl ester, alanine methyl ester, and proline methyl ester show that their energetically most favorable complexes result from charge solvation, except for proline which forms salt bridges. The most stable mode of charge solvation depends on the ligand (AA or AAOMe) and, for AA, it gradually changes with metal ion size. Esters chelate all M(+) ions through the amine and carbonyl groups. Amino acids coordinate Li(+) and Na(+) ions through the amine and carbonyl groups as well, but K(+) and Cs(+) ions are coordinated by the O atoms of the carboxyl group. Upon consideration of these differences in favored binding geometries, the theoretically derived relative M(+) affinities between aliphatic AA and AAOMe are in good overall agreement with the above given experimental trends. The majority of side chain functionalized amino acids studied show experimentally the affinity order AAAAOMe. The latter ranking is attributed to salt bridge formation.  相似文献   

13.
Capillary affinity electrophoresis (CAE) has been employed to investigate quantitatively the interactions of valinomycin, macrocyclic depsipeptide antibiotic ionophore, with univalent cations, ammonium and alkali metal ions, K(+), Cs(+), Na(+), and Li(+), in methanol. The study involved measuring the change in effective electrophoretic mobility of valinomycin while the cation concentrations in the BGE were increased. The corresponding apparent stability (binding) constants of the valinomycin-univalent cation complexes were obtained from the dependence of valinomycin effective mobility on the cation concentration in BGE using a nonlinear regression analysis. The calculated apparent stability constants of the above-mentioned complexes show the substantially higher selectivity of valinomycin for K(+) and Cs(+) ions over Li(+), Na(+), and NH(4)(+) ions. CAE proved to be a suitable method for the investigation of both weak and strong interactions of valinomycin with small ions.  相似文献   

14.
Infrared multiple photon dissociation (IRMPD) kinetics measured with tunable laser radiation from a free electron laser (FEL) are used to probe the relative populations of and interconversions between energetically competitive isomers of gas-phase ions at 298 K. On-resonance IRMPD kinetics of monoisomeric benzoate anion and anilinium (protonated aniline) are measured to determine the extent of overlap of the laser beam with the precursor ion population (~93%). IRMPD kinetics indicating different photodissociation behavior for different isomers obtained at isomer-specific resonances are used to determine relative populations of salt bridge and charge-solvated isomers for ArgGly·Na(+), Ser·Cs(+), and Arg·Na(+). These values and Gibbs free energy differences obtained from them for thermal precursor populations are compared to values reported using other, less direct population probes. Rapid interconversion of two charge-solvated isomers occurs for ArgGly·Li(+), precluding population analysis for this ion. ArgGly·Na(+), ArgGly·Li(+), and Arg·Na(+) exhibit IRMPD induction periods lasting many seconds for some isomers at the laser photon energies and power used, indicating that IRMPD relative spectral intensities are time-dependent for these ions and that the relative band intensities in IRMPD spectra measured with short irradiation times may not provide meaningful information about relative isomer populations. These results constitute the first direct probe of ion isomer populations using IRMPD kinetics obtained with a FEL and illustrate a number of caveats in interpreting IRMPD spectra measured with just a single irradiation time. These results also indicate that more complete overlap of the laser beam with the ions will be highly advantageous in future instrument designs for IRMPD kinetics and spectroscopy experiments.  相似文献   

15.
The geometric structures, the interaction energies, the vibrational characteristics, and the electronic structures of the complexes of the isoguanine (isoG) quintet coordinated with mono valent cations (Na(+), K(+), Rb(+), and Cs(+)) have been studied based on the nonplanar models. The geometry of the local minimum structure of the Na(+)-isoG quintet complex deviates significantly from the planar structure. The geometric characteristics of the Na(+)-isoG quintet complex support the experimental findings that Na(+) is unlikely to induce the formation of the isoG quintet-based pentaplexes. Similar to the guanine tetraplexes, the ionic selectivity of the isoG quintet-based pentaplexes is largely dominated by the hydration energy of the cations. After hydration correction, the positive value of the free energy difference for the formation of the Na(+)-isoG quintet complex (DeltaG(f)) suggests that the isoG quintet is unable to capture the hydrated Na(+). The negative values of DeltaG(f) for the K(+) and Rb(+) complexes implies that both ions have the tendency to be inserted into the isoG pentaplexes. This study suggests that, to elucidate the high Cs(+) selectivity of isoG pentaplexes, it is necessary to extend the model from the isoG quintet to the isoG decamer.  相似文献   

16.
We report a solid-state (23)Na NMR study of monovalent cation (Li(+), Na(+), K(+), Rb(+), Cs(+) and NH(4) (+)) binding to double-stranded calf thymus DNA (CT DNA) at low relative humidity, ca 0-10%. Results from (23)Na--(31)P rotational echo double resonance (REDOR) NMR experiments firmly establish that, at low relative humidity, monovalent cations are directly bound to the phosphate group of CT DNA and are partially dehydrated. On the basis of solid-state (23)Na NMR titration experiments, we obtain quantitative thermodynamic parameters concerning the cation-binding affinity for the phosphate group of CT DNA. The free energy difference (DeltaG degrees ) between M(+) and Na(+) ions is as follows: Li(+) (-1.0 kcal mol(-1)), K(+) (7.2 kcal mol(-1)), NH(4) (+) (1.0 kcal mol(-1)), Rb(+) (4.5 kcal mol(-1)) and Cs(+) (1.5 kcal mol(-1)). These results suggest that, at low relative humidity, the binding affinity of monovalent cations for the phosphate group of CT DNA follows the order: Li(+) > Na(+) > NH(4) (+) > Cs(+) > Rb(+) > K(+). This sequence is drastically different from that observed for CT DNA in solution. This discrepancy is attributed to the different modes of cation binding in dry and wet states of DNA. In the wet state of DNA, cations are fully hydrated. Our results suggest that the free energy balance between direct cation-phosphate contact and dehydration interactions is important. The reported experimental results on relative ion-binding affinity for the DNA backbone may be used for testing theoretical treatment of cation-phosphate interactions in DNA.  相似文献   

17.
Electronic and vibrational spectra of benzo-15-crown-5 (B15C5) and benzo-18-crown-6 (B18C6) complexes with alkali metal ions, M(+)?B15C5 and M(+)?B18C6 (M = Li, Na, K, Rb, and Cs), are measured using UV photodissociation (UVPD) and IR-UV double resonance spectroscopy in a cold, 22-pole ion trap. We determine the structure of conformers with the aid of density functional theory calculations. In the Na(+)?B15C5 and K(+)?B18C6 complexes, the crown ethers open the most and hold the metal ions at the center of the ether ring, demonstrating an optimum matching in size between the cavity of the crown ethers and the metal ions. For smaller ions, the crown ethers deform the ether ring to decrease the distance and increase the interaction between the metal ions and oxygen atoms; the metal ions are completely surrounded by the ether ring. In the case of larger ions, the metal ions are too large to enter the crown cavity and are positioned on it, leaving one of its sides open for further solvation. Thermochemistry data calculated on the basis of the stable conformers of the complexes suggest that the ion selectivity of crown ethers is controlled primarily by the enthalpy change for the complex formation in solution, which depends strongly on the complex structure.  相似文献   

18.
A comparative study of the effects of alkali metal ions Li(+), Na(+), K(+), Rb(+), and Cs(+) on the liquid crystalline organization of high-molecular-weight calf thymus DNA using polarized light microscopy was performed. Major differences in the behavior of Li(+) as compared to the other ions were found. Critical DNA concentration expected to exhibit anisotropic behavior was found to be the same for all the monovalent ions, except for Li(+). DNA initially showed cholesteric textures, which later changed to higher ordered columnar phase for all ions, with the cholesteric-columnar transition facilitated upon increasing the size of the counterion. For Li(+) ion, a nematic schlieren-like texture was formed initially, which after a few days changed to a highly stable (for more than 2 months) biphasic cholesteric-columnar arrangement. The observed differences between Li(+) and other alkali metal ions could be rationalized on the basis of the higher number of hydration water molecules of Li(+) and its complexation behavior. Highly stable DNA mesophases may find applications in the field of nanoelectronics, in designing biosensing units, and in DNA chips.  相似文献   

19.
Glycogen synthase kinase 3β (GSK3β) is a serine/threonine kinase that requires two cofactor Mg(2+) ions for catalysis in regulating many important cellular signals. Experimentally, Li(+) is a competitive inhibitor of GSK3β relative to Mg(2+), while this mechanism is not experienced with other group I metal ions. Herein, we use native Mg(2)(2+)-Mg(1)(2+) GSK3β and its Mg(2)(2+)-M(1)(+) (M = Li, Na, K, and Rb) derivatives to investigate the effect of metal ion substitution on the mechanism of inhibition through two-layer ONIOM-based quantum mechanics/molecular mechanics (QM/MM) calculations and molecular dynamics (MD) simulations. The results of ONIOM calculations elucidate that the interaction of Na(+), K(+), and Rb(+) with ATP is weaker compared to that of Mg(2+) and Li(+) with ATP, and the critical triphosphate moiety of ATP undergoes a large conformational change in the Na(+), K(+), and Rb(+) substituted systems. As a result, the three metal ions (Na(+), K(+), and Rb(+)) are not stable and depart from the active site, while Mg(2+) and Li(+) can stabilize in the active site, evident in MD simulations. Comparisons of Mg(2)(2+)-Mg(1)(2+) and Mg(2)(2+)-Li(1)(+) systems reveal that the inline phosphor-transfer of ATP and the two conserved hydrogen bonds between Lys85 and ATP, together with the electrostatic potential at the Li(1)(+) site, are disrupted in the Mg(2)(2+)-Li(1)(+) system. These computational results highlight the possible mechanism why Li(+) inhibits GSK3β.  相似文献   

20.
Resorc[4]arenes are compounds with interesting properties, mainly because of their ability to form host-guest complexes with the guest located inside the cavity. The size of the guest limits the complexation, as shown by a competition experiment with tetraalkylammonium ions of different size. By electroscopy ionization tandem mass spectrometric experiments on resorc[4]arene heterodimers bearing an alkali metal ion as guest, it was found that there must be two different binding mechanisms for alkali metal ions with high surface charge density (Li(+) and Na(+)) on the one hand compared with those with a lower surface charge density on the other hand (K(+), Rb(+), Cs(+)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号