首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文研究有穷圆内的值分布,其中f(2)为非常数亚纯函数,为非零亚纯函数,并对平面上这样的函数,若,得到  相似文献   

2.
关于ψ(z)f(z)f‘(z)的值分布   总被引:3,自引:0,他引:3  
张庆德 《数学学报》1994,37(1):91-98
本文研究有穷圆内ψ(z)f(z)f'(z)的值分布,其中f(z)为非常数亚纯函数,ψ(z)为非零亚纯函数,并对平面上这样的函数,若T(r,ψ)=S(r,f),得到T(r,f)〈9/2N(r,f)+1/2N(r,1/ψff'-1)+S(r,f)。  相似文献   

3.
Suppose that function f(z) is transcendental and meromorphic in the plane. The aim of this work is to investigate the conditions in which differential monomials f(z)f(k)(z) takes any non-zero finite complex number infinitely times and to consider the normality relation to differential monomials f(z)f(k)(z).  相似文献   

4.
公式|z|~2=zz(z∈C)的应用(教案)武汉市一中邱应麟教学目的1.引导学生正确理解此公式的意义,熟练它的应用,并在应用中提高逻辑思维能力.2.引导学生明确实数集中“|x|=x2”是复数集中“|z|2=zz”的特例,加深对复数概念的理解.教学过程?..  相似文献   

5.
Boundary Extension of μ(z)—homeomorphism   总被引:1,自引:0,他引:1  
郑学良 《数学季刊》1999,14(2):94-96
§1. IntroductionItiswellknownthattheBeltramiequationfz=μ(z)fz(1.1)hasauniquehomeomorphicsolutionundernormalizationconditionwhenyμ(z)y∞<1.Thissolutionishabituallycalledaquasiconformalmappingwithcomplexdilatationμ(z)[1].Withoutthisessentialrestriction…  相似文献   

6.
林清泉 《应用数学》1999,12(2):103-107
本文讨论漂移系数g(S,·,·)不满足Lipschitz条件的一类例向随机微机方程(BSDE)关于(x,y)限制条件下最小g-上解的存在唯一性,为此我们讨论了这一类BSDE的比较定理.推广了[1]在g(s,·,·)关于(x,y)满足Lipschitz条件下的结果.  相似文献   

7.
8.
运用同余及元素阶的性质,证明了对任意的正整数n,丢番图方程(195n)x+(28n)y=(197n)z仅有正整数解(x, y, z)=(2,2,2)。  相似文献   

9.
仇惠玲 《数学研究》2000,33(4):426-431,438
给出了函数方程f(z^k)=q(f(z))存在有例外值亚纯解的充要条件及解的一般形式。这里q(z)为给定的k次有理函数。  相似文献   

10.
在Jeismanowicz猜想的基础上,利用初等方法证明了对任意的正整数n, Diophantine方程(44n)x+(117n)y=(125n)z 仅有正整数解(x, y, z)=(2,2,2)。  相似文献   

11.
The classical Schwarz-Pick lemma and Julia lemma for holomorphic mappings on the unit disk D are generalized to real harmonic mappings of the unit disk, and the results are precise. It is proved that for a harmonic mapping U of D into the open interval I = (?1, 1), $$\frac{{\Lambda _U (z)}} {{\cos \tfrac{{U(z)\pi }} {2}}} \leqslant \frac{4} {\pi }\frac{1} {{1 - \left| z \right|^2 }}$$ holds for z ∈ D, where Λ U (z) is the maximum dilation of U at z. The inequality is sharp for any zD and any value of U(z), and the equality occurs for some point in D if and only if $U(z) = \tfrac{4} {\pi }\operatorname{Re} \{ \arctan \phi (z)\}$ , zD, with a Möbius transformation φ of D onto itself.  相似文献   

12.
We prove the following inequalities involving Euler’s beta function. (i) Let α and β be real numbers. The inequalities $\left( {\frac{{y^{z - x} }} {{x^{z - y} z^{y - x} }}} \right)^\alpha \leqslant \frac{{B(x,x)^{z - y} B(z,z)^{y - x} }} {{B(y,y)^{z - x} }} \leqslant \left( {\frac{{y^{z - x} }} {{x^{z - y} z^{y - x} }}} \right)^\beta $ hold for all x, y, z with 0 < xyz if and only if α ≤ 1/2 and β ≥ 1. (ii) Let a and b be non-negative real numbers. For all positive real numbers x and y we have $\delta (a,b) \leqslant \frac{{x^a B(x + b,y) + y^a B(x,y + b)}} {{(x + y)^a B(x,y)}} \leqslant \Delta (a,b) $ with the best possible bounds $\delta (a,b) = \min \{ 2^{ - a} ,2^{1 - a - b} \} and\Delta (a,b) = \max \{ 1,2^{1 - a - b} \} . $ .  相似文献   

13.
If φ: [0, 1) → (0,∞) is a non-decreasing unbounded function, then the φ-order of a meromorphic function f in the unit disc is defined as $$ \sigma _\phi (f) = \mathop {\lim \sup }\limits_{r \to 1^ - } \frac{{\log ^ + T(r,f)}} {{\log \phi (r)}}, $$ where T(r, f) is the Nevanlinna characteristic of f. In particular, $ \sigma _{\tfrac{1} {{1 - r}}} $ f is the order of f, and $ \sigma _{\log \tfrac{1} {{1 - r}}} $ f is the logarithmic order of f. Several results on the finiteness of the φ-order of solutions of $$ f^{(k)} + A_{k - 1} (z)f^{(k - 1)} + \cdots + A_1 (z)f' + A_0 (z)f = 0 $$ are obtained in the case when the coefficients A 0(z), ...,A k?1(z) are analytic functions in the unit disc. This paper completes some earlier results by various authors.  相似文献   

14.
The paper introduces singular integral operators of a new type defined in the space L p with the weight function on the complex plane. For these operators, norm estimates are derived. Namely, if V is a complex-valued function on the complex plane satisfying the condition |V(z) ? V(??)| ?? w|z ? ??| and F is an entire function, then we put $$P_F^* f(z) = \mathop {\sup }\limits_{\varepsilon > 0} \left| {\int\limits_{\left| {\zeta - z} \right| > \varepsilon } {F\left( {\frac{{V(\zeta ) - V(z)}} {{\zeta - z}}} \right)\frac{{f(\zeta )}} {{\left( {\zeta - z} \right)^2 }}d\sigma (\zeta )} } \right|.$$ It is shown that if the weight function ?? is a Muckenhoupt A p weight for 1 < p < ??, then $$\left\| {P_F^* f} \right\|_{p,\omega } \leqslant C(F,w,p)\left\| f \right\|_{p,\omega } .$$ .  相似文献   

15.
For q ∈ (0, 1) let the q-difference operator be defined as follows $$\partial _q f(z) = \frac{{f(qz) - f(z)}} {{z(q - 1)}} (z \in \mathbb{U}),$$ where \(\mathbb{U}\) denotes the open unit disk in a complex plane. Making use of the above operator the extended Ruscheweyh differential operator R q λ f is defined. Applying R q λ f a subfamily of analytic functions is defined. Several interesting properties of a defined family of functions are investigated.  相似文献   

16.
Let f(z) be a holomorphic Hecke eigencuspform of weight k for the full modular group. Let ?? f (n) be the nth normalized Fourier coefficient of f(z). Suppose that L(sym2 f, s) is the symmetric square L-function associated with f(z), and $ \lambda _{sym^2 f} (n) $ (n) denotes the nth coefficient L(sym2 f, s). In this paper, it is proved that $$ \sum\limits_{n \leqslant x} {\lambda _{sym^2 f}^4 (n)} = xP2(\log x) + O(x^{\frac{{79}} {{81}} + \varepsilon } ), $$ , where P 2(t) is a polynomial in t of degree 2. Similarly, it is obtained that $$ \sum\limits_{n \leqslant x} {\lambda _f^4 (n^2 )} = x\tilde P2(\log x) + O(x^{\frac{{79}} {{81}} + \varepsilon } ), $$ , where $ \tilde P_2 (t) $ is a polynomial in t of degree 2.  相似文献   

17.
LetG be a simple graph and let $\bar G$ denotes its complement. We say thatG is integral if its spectrum consists entirely of integers. If $\overline {\alpha K_a \cup \beta K_b } $ is integral we show that it belongs to the class of integral graphs $$\overline {[\frac{{kt}}{\tau }x_o + \frac{{mt}}{\tau }z]K(t + \ell n)k + \ell m \cup [\frac{{kt}}{\tau }y_o + \frac{{(t + \ell n)k + \ell m}}{\tau }z]nK\ell m,} $$ where (i) t, k, l, m, n ∈ ? such that (m, n) =1, (n, t) =1 and (l, t)=1; (ii) τ=((t+ln)k+lm, mt) such that τ| kt; (iii) (x0, y0) is aparticular solution of the linear Diophantine equation ((t+ln)k+lm)x-(mt)y=τ and (iv) z≥z0 where z0 is the least integer such that $(\frac{{kt}}{\tau }x_0 + \frac{{mt}}{\tau }z_0 ) \geqslant 1$ and $(\frac{{kt}}{\tau }y_0 + \frac{{(t + \ell n)k + \ell m}}{\tau }z_0 ) \geqslant 1$ .  相似文献   

18.
We investigate the question of the regularized sums of part of the eigenvalues zn (lying along a direction) of a Sturm-Liouville operator. The first regularized sum is $$\sum\nolimits_{n = 1}^\infty {(z_n - n - \frac{{c_1 }}{n} + \frac{2}{\pi } \cdot z_n arctg \frac{1}{{z_n }} - \frac{2}{\pi }) = \frac{{B_2 }}{2} - c_1 \cdot \gamma + \int_1^\infty {\left[ {R(z) - \frac{{l_0 }}{{\sqrt z }} - \frac{{l_1 }}{z} - \frac{{l_2 }}{{z\sqrt z }}} \right]} } \sqrt z dz,$$ where the zn are eigenvalues lying along the positive semi-axis, z n 2 n, $$l_0 = \frac{\pi }{2}, l_1 = - \frac{1}{2}, l_2 = - \frac{1}{4}\int_0^\pi {q(x) dx,} c_1 = - \frac{2}{\pi }l_2 ,$$ , B2 is a Bernoulli number, γ is Euler's constant, and \(R(z)\) is the trace of the resolvent of a Sturm-Liouville operator.  相似文献   

19.
The problem is as follows: How to describe graphically the set T(1)(Γ) where $T(1)(z) = \int_\Gamma {\tfrac{{d\mu (\zeta )}} {{\zeta - z}}} $ and Γ = Γθ is the Von Koch curve, θ ∈ (0, π/4)? In this paper we give some expression permitting us to compute T θ(1)(z) for each z ∈ Γ to within an arbitrary ? > 0. Also we provide an estimate for the error.  相似文献   

20.
Consider the stationary motion of an incompressible Navier–Stokes fluid around a rotating body $ \mathcal{K} = \mathbb{R}^3 \, \backslash \, {\Omega}$ which is also moving in the direction of the axis of rotation. We assume that the translational and angular velocities U, ω are constant and the external force is given by f = div F. Then the motion is described by a variant of the stationary Navier–Stokes equations on the exterior domain Ω for the unknown velocity u and pressure p, with U, ω, F being the data. We first prove the existence of at least one solution (u, p) satisfying ${\nabla u, p \in L_{3/2, \infty} (\Omega)}$ and ${u \in L_3, \infty (\Omega)}$ under the smallness condition on ${|U| + |\omega| + ||F||_{L_{3/2, \infty} (\Omega)}}$ . Then the uniqueness is shown for solutions (u, p) satisfying ${\nabla u, p \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}$ and ${u \in L_{3, \infty} (\Omega) \cap L_{q*, r} (\Omega)}$ provided that 3/2 <? q <? 3 and ${{F \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}}$ . Here L q,r (Ω) denotes the well-known Lorentz space and q* =? 3q /(3 ? q) is the Sobolev exponent to q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号