首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Significant influence of sample preparation on thermal decomposition of polyolefin-technological oil mixtures was proved during tests. Samples of polymer-oil mixtures were prepared with two methods: reducing size and components mixing and soaking in temperature 170°C. Soaking causes decreasing thermal stability of the charge. This fact manifests itself in decreasing of thermal decomposition temperature in laboratory scale, as well as in change of characteristic decomposition temperatures during thermogravimetric analyses. Data analysis was performed with the use of classic method based on Arrhenius kinetic equation and three-parameter model. The influence of sample composition and preparation method on values of three-parameter equation coefficients was observed.  相似文献   

2.
3.
A novel parameter of the relative rate of thermal decomposition has been defined on the basis of an analysis of equation relating the logarithm of the conversion degree on the temperature. The dependence of this parameter on temperature in the dynamic conditions has been analyzed and discussed. The dependence of the relative rate of thermal decomposition is a linear relationship involving two coefficients. These coefficients can be related to the enthalpy and activation energy. The parameter developed has been used for the analysis of a series of consecutive reactions of thermal decomposition of calcium oxalate monohydrate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Kinetic or rather thermokinetic analysis of thermal decomposition with releasing gaseous products is a current subject of discussion in many works and still devotes much attention to the property and meaningfulness of the single kinetics triplet determination. Analysis of thermogravimetric data by the relative rate of reaction/process were used to examine the frequently studied process of thermal dissociation of calcium carbonate as a model compound and comparing with published data for chemically defined compounds (azo-peroxyesters) and complex polyolefins?Cliquid paraffin mixtures. Two methods of correlation between parameters of the model were observed: thermodynamic and analytical expression. It was shown that these relations depend on course of the process. For analyzed model substance, enthalpy of reaction can be deduced on the basis of relation between coefficients in three-parameter equation. For large values of coefficients it is not possible, but other type of correlation was proved. Also, the relative rate of CO2 gasification (Boudouard reaction) of brown and bituminous coals was analyzed and compared to that of its pyrolysis.  相似文献   

5.
The kinetics and mechanism of thermal decomposition of nitrate complexes of lanthanides with the Schiff base4-N-(2′-furfurylidene) aminoantipyrine (abbreviated as FAA) have been studied by TG and DTG techniques. The kinetic data for the first stage of decomposition were calculated using the Coats-Redfern equation. The rate-controlling process obeys Mampel model representing random nucleation, with one nucleus on each particle. It is observed that there is no gradation in the values of the kinetic parameters of decomposition of the complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The thermal decomposition process and non-isothermal decomposition kinetic of glyphosate were studied by the Differential thermal analysis (DTA) and Thermogravimetric analysis (TGA). The results showed that the thermal decomposition temperature of glyphosate was above 198?°C. And the decomposition process was divided into three stages: The zero stage is the decomposition of impurities, and the mass loss in the first and second stage may be methylene and carbonyl, respectively. The mechanism function and kinetic parameters of non-isothermal decomposition of glyphosate were obtained from the analysis of DTA?CTG curves by the methods of Kissinger, Flynn?CWall?COzawa, Distributed activation energy model, Doyle and ?atava-?esták, respectively. In the first stage, the kinetic equation of glyphosate decomposition obtained showed that the decomposition reaction is a Valensi equation of which is two-dimensional diffusion, 2D. Its activation energy and pre-exponential factor were obtained to be 201.10?kJ?mol?1 and 1.15?×?1019?s?1, respectively. In the second stage, the kinetic equation of glyphosate decomposition obtained showed that the decomposition reaction is a Avrami?CErofeev equation of which is nucleation and growth, and whose reaction order (n) is 4. Its activation energy and pre-exponential factor were obtained to be 251.11?kJ?mol?1 and 1.48?×?1021?s?1, respectively. Moreover, the results of thermodynamical analysis showed that enthalpy change of ??H ??, entropy change of ??S ?? and the change of Gibbs free energy of ??G ?? were, respectively, 196.80?kJ?mol?1,107.03?J?mol?1?K?1, and 141.77?kJ?mol?1 in the first stage of the process of thermal decomposition; and 246.26?kJ?mol?1,146.43?J?mol?1?K?1, and 160.82?kJ?mol?1 in the second stage.  相似文献   

7.
This work presents results of research on thermal decomposition of nickel(II) sulfate(VI) hexahydrate in air and in helium atmosphere. On the base of TG and XRD results a mechanism of thermal decomposition of NiSO4 hydrate was established. For calculations of kinetic parameters of the Arrhenius equation, the Coats-Redfern approximation was applied. Choice of g(a) function and thus of a mechanism best describing given stage of decomposition was performed by testing 12 kinetic models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Compensation Effect in the Kinetics of Spatially Hindered Phenols   总被引:1,自引:0,他引:1  
This paper reports a linear relationship between kinetic characteristics from the Arrhenius equation describing a decomposition process found when studying the kinetics of thermolysis of spatially hindered phenols. This relationship between the coefficients is known in the literature as a 'compensation effect'. The existence of the compensation effect permits some conclusions concerning the decomposition mechanism and thermal characteristics of the compounds under investigation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The high temperature decomposition kinetics of toluene and benzyl were investigated by combining a kinetic analysis with the ab initio/master equation study of new reaction channels. It was found that similarly to toluene, which decomposes to benzyl and phenyl losing atomic hydrogen and methyl, also benzyl decomposition proceeds through two channels with similar products. The first leads to the formation of fulvenallene and hydrogen and has already been investigated in detail in recent publications. In this work it is proposed that benzyl can decompose also through a second decomposition channel to form benzyne and methyl. The channel specific kinetic constants of benzyl decomposition were determined by integrating the RRKM/master equation over the C(7)H(7) potential energy surface. The energies of wells and saddle points were determined at the CCSD(T) level on B3LYP/6-31+G(d,p) structures. A kinetic mechanism was then formulated, which comprises the benzyl and toluene decomposition reactions together with a recently proposed fulvenallene decomposition mechanism, the decomposition kinetics of the fulvenallenyl radical, and some reactions describing the secondary chemistry originated by the decomposition products. The kinetic mechanism so obtained was used to simulate the production of H atoms measured in a wide pressure and temperature range using different experimental setups. The calculated and experimental data are in good agreement. Kinetic constants of the new reaction channels here examined are reported as a function of temperature at different pressures. The mechanism here proposed is not compatible with the assumption often used in literature kinetic mechanisms that benzyl decomposition can be effectively described through a lumped reaction whose products are the cyclopentadienyl radical and acetylene.  相似文献   

10.
采用TG-DTG和DTA技术研究了2,2'-联吡啶-对甲氧基苯甲酸铕(Ⅲ)在静态空气中的非等温热分解过程及动力学,根据TG曲线确定了热分解过程中的中间产物及最终产物,运用微分法与积分法对非等温动力学数据进行分析,推断出第一步的动力学方程为dα/dt=Aexp(-E/RT)2(1-α)1/2.  相似文献   

11.
Various methods for describing the distribution of water in the H2O-tributyl phosphate (TBP) system were considered. An equation for describing the deviations from the Henry law was proposed. A three-parameter equation for calculating the distribution of water in H2O-TBP-solvent systems was derived. It is based on the additive solubility model and allows for the dependence of the activity coefficients on the TBP concentration. Based on the published data, the parameters of the equation for a number of systems were calculated.  相似文献   

12.
Nonlinear regression of the basic kinetic equation was used to determine kinetic parameters of simple and complex decomposition processes related to some pesticides and pharmaceutical substances. The method for this calculation was carried out using a single TG curve. These values were compared with those obtained with model‐fitting and model‐free methods. Nonlinear regression method is able to define a single mechanism for compounds undergoing one or few steps of decomposition processes. For compounds that undergo many steps of decomposition processes, only the mechanisms of some of them can be hypothesized. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 611–622, 2003  相似文献   

13.
Polytriazole polyethylene oxide‐tetrahydrofuran (PTPET) is an energetic propellant elastomer that is prepared using glycidyl azide polymer and trifunctional alkynyl‐terminated polyethylene oxide‐tetrahydrofuran. Its thermal decomposition, determined using thermogravimetic analysis, showed two mass‐loss peaks largely related to the decomposition of azide groups and the main chain. Flynn‐Wall‐Ozawa and Kissinger‐Akahira‐Sunose methods were deployed to obtain kinetic triplet parameters of PTPET thermal decomposition by the traditional model‐free method; the Coats‐Redfern approach was used as the model‐fitting method. Kinetics analysis indicated that the mechanism of the two‐step reactions were the primary‐reaction of first order and the power‐law phase reaction of the 2/3 order. The first decomposition stage of PTPET had an activation energy (Ea) of 113 to 116 kJ/mol while the second was 196 to 210 kJ/mol. The thermal decomposition of PTPET with different heating rates and mechanisms showed good kinetic compensation effects, the gas products being further studied with TG‐FTIR.  相似文献   

14.
采用Arrhenius方程的双参数形式描述反应的速率常数对温度的依赖关系, 解决了三参数(A, n, E)过拟合造成的复杂燃烧机理参数缺乏通用性等问题. 在不改变物种数和基元反应数条件下, 将UCSD核心机理进行双参数处理, 并应用于小分子体系的动力学模拟, 得到的模拟结果与三参数机理基本相符. 双参数机理恢复了Arrhenius活化能的物理意义, 可实现机理的参数比较和迁移, 缩小了机理整体优化的变量空间, 为燃烧机理参数的统一奠定了基础.  相似文献   

15.
聚羟基丁酸-戊酸的非等温热分解反应动力学   总被引:4,自引:0,他引:4  
用非等温TG-DTA技术, 在5.0、10.0、15.0和20.0 K•min-1线性升温条件下, 研究聚羟基丁酸-戊酸(PHBV)的热分解反应动力学. 结果表明, 分解过程分三个阶段:分解初期、分解中期和分解后期. 分解初期的机理函数为Avrami-Erofeev方程(n=1/2), 对应随机成核和随后生长机理, 表观活化能Ea(β→0)为69.44 kJ•mol-1, 指前因子A(β→0)为106.27 s-1;分解中期的机理函数为Avrami-Erofeev方程(n =2/5), 对应随机成核和随后生长机理, 表观活化能Ea(β→0)为117.64 kJ•mol-1, 指前因子A(β→0)为1011.48 s-1;分解后期的机理函数为Mampel Power法则(n=1/3), 对应机理为幂函数法则, 表观活化能Ea(β→0)为116.64 kJ•mol-1, 指前因子A(β→0)为108.68 s-1.  相似文献   

16.
This work reports measurements of absolute rate coefficients and Rice-Ramsperger-Kassel-Marcus (RRKM) master equation simulations of the C2H3+C2H4 reaction. Direct kinetic studies were performed over a temperature range of 300-700 K and pressures of 20 and 133 mbar. Vinyl radicals (H2C=CH) were generated by laser photolysis of vinyl iodide (C2H3I) at 266 nm, and time-resolved absorption spectroscopy was used to probe vinyl radicals through absorption at 423.2 nm. Measurements at 20 mbar are in good agreement with previous determinations at higher temperature. A weighted three-parameter Arrhenius fit to the experimental rate constant at 133 mbar, with the temperature exponent fixed, gives k=(7+/-1)x10(-14) cm3 molecule(-1) s(-1) (T/298 K)2 exp[-(1430+/-70) K/T]. RRKM master equation simulations, based on G3 calculations of stationary points on the C4H7 potential energy surface, were carried out to predict rate coefficients and product branching fractions. The predicted branching to 1-methylallyl product is relatively small under the conditions of the present experiments but increases as the pressure is lowered. Analysis of end products of 248 nm photolysis of vinyl iodide/ethylene mixtures at total pressures between 27 and 933 mbar provides no direct evidence for participation of 1-methylallyl.  相似文献   

17.
In this paper kinetics of thermal decomposition of oxalato coordination is stuided by gas chromatography. A kinetic equation of thermal decomposition is proposed. A computer program which was written in FORTRAN-IV language has been worked out to evaluate the activation energy and the Arrhenius pre-exponential factor. The results of calculation show that the equation is better agreement with the experimantal data. The activation step in decomposition of Fe(C2H4)3 is discussed on basis of calculation by EHMO method.  相似文献   

18.
The thermal behavior and kinetic parameters of the exothermic decomposition reaction of N-methyl-N-nitro-2,2,2-trinitroethanamine in a temperature-programmed mode have been investigated by means of differential scanning calorimetry (DSC).The kinetic equation of the exothermic decomposition process of the compound is proposed. The values of the apparent activation energy (Ea), pre-exponential factor (A), entropy of activation (ΔS^≠ ), enthalpy of activation (ΔH^≠ ), and free energy of activation (ΔG^≠ ) of this reaction and the critical temperature of thermal explosion of the compound are reported. Information is obtained on the mechanism of the initial stage of the thermal decomposition of the compound.  相似文献   

19.
The thermal decomposition of the 5-methyl-2-furanylmethyl radical (R(1)), the most important primary radical formed during the combustion and thermal decomposition of 2,5-dimethylfuran (a promising next-generation biofuel), was studied using CBS-QB3 calculations and master equation (ME)/RRKM modeling. Because very little information is available in the literature, the detailed potential energy surface (PES) was investigated thoroughly. Only the main pathways, having a kinetic influence on the decomposition of R(1), were retained in the final ME/RRKM model. Among all the channels studied, the ring-opening of the 5-methyl-2-furanylmethyl radical, followed by ring enlargement to form cyclohexadienone molecules is predicted to be the easiest decomposition channel of R(1). The C(6) cyclic species formed can undergo unimolecular reactions to yield phenol and to a lesser extent cyclopentadiene and CO. Our calculations predict that these species are important products formed during the pyrolysis of 2,5-dimethylfuran (DMF). Other channels involved in the decomposition of R(1) lead directly to the formation of linear and cyclic unsaturated C(5) species and constitute an additional source of cyclopentadiene and CO. High-pressure limit rate constants were computed as well as thermochemical properties for important species. ME/RRKM analysis was performed to probe the influence of pressure on the rate coefficients and pressure dependent rate coefficients were proposed for pressures and temperatures ranging, respectively, from 10(-2) bar to 10 bar and 1000 to 2000 K.  相似文献   

20.
胰蛋白酶和苯酰氨类抑制剂结合自由能的预测   总被引:1,自引:0,他引:1  
用基于线性响应近似的自由能预测方法计算胰蛋白酶和苯酰氨类抑制剂的结合 自由能。计算结果表明,单参数,双参数和三参数模型具有相似的线性回归系数, 但三参数和双参数模型的交互验证回归系数要明显优于单参数模型。从预测能力来 看,双参数模型和三参数模型都能够很好地预测测试集中抑制剂的结合自由能,其 中双参数模型预测的结果要略优于三参数模型的预测结果。对测试集中的抑制剂, 双参数模型预测得到的预测自由能和实际自由能之间平均绝对误差仅为1.15 kJ/mol。自由能计算模型以及分子动力学轨迹能很好地解释抑制剂结构和活性的 关系,为药物设计提供了重要的结构信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号