首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simplified kinetic model for RAFT microemulsion polymerization has been developed to facilitate the investigation of the effects of slow fragmentation of the intermediate macro‐RAFT radical, termination reactions, and diffusion rate of the chain transfer agent to the locus of polymerization on the control of the polymerization and the rate of monomer conversion. This simplified model captures the experimentally observed decrease in the rate of polymerization, and the shift of the rate maximum to conversions less than the 39% conversion predicted by the Morgan model for uncontrolled microemulsion polymerizations. The model shows that the short, but finite, lifetime of the intermediate macro‐RAFT radical (1.3 × 10?4–1.3 × 10?2 s) causes the observed rate retardation in RAFT microemulsion polymerizations of butyl acrylate with the chain transfer agent methyl‐2‐(O‐ethylxanthyl)propionate. The calculated magnitude of the fragmentation rate constant (kf = 4.0 × 101–4.0 × 103 s?1) is greater than the literature values for bulk RAFT polymerizations that only consider slow fragmentation of the macro‐RAFT radical and not termination (kf = 10?2 s?1). This is consistent with the finding that slow fragmentation promotes biradical termination in RAFT microemulsion polymerizations. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 604–613, 2010  相似文献   

2.
Triphenylbismuthonium 1,2,3,4‐tetraphenylcyclopentadienylide in 1,4‐dioxan initiated radical polymerization of methyl acrylate to ~30% conversion without gelation because of autoacceleration. The polymer had a viscosity‐average molecular weight of 200,000. The kinetic expression was Rpα[I]0.3[M]1.16, that is, the system followed nonideal kinetics because of primary radical termination and degradative chain‐transfer reactions. The values of kkt and the energy of activation were computed as 3.12 × 10?5 Lmol?1s?1 and 28 kJ/mol, respectively. The ylide dissociated to form a phenyl radical, which brought about polymerization of methyl acrylate. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2060–2065, 2004  相似文献   

3.
A detailed investigation of addition–fragmentation chain transfer (AFCT) in the free‐radical polymerization of methyl methacrylate (MMA) in the presence of methyl α‐(bromomethyl)acrylate (MBMA) was carried out to elucidate mechanistic details with efficient macromonomer synthesis as an underlying goal. Advanced modeling techniques were used in connection with the experimental work. Curve fitting of simulated and experimental molecular weight distributions with respect to the rate coefficient for addition of propagating radicals to MBMA (kadd) over 60–120 °C resulted in Eadd = 21.7 kJ mol?1 and Aadd = 2.18 × 106 M?1 s?1 and a very weak temperature dependence of the chain‐transfer constant (EaddEp). The rate coefficient for fragmentation of adduct radicals at 60 °C was estimated as kf ≈ 39 s?1 on the basis of experimental data of the MMA conversion and the concentration of 2‐carbomethoxy‐2‐propenyl end groups. The approach developed is generic and can be applied to any AFCT system in which copolymerization does not occur and in which the resulting unsaturated end groups do not undergo further reactions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2640–2650, 2004  相似文献   

4.
The reversible addition–fragmentation chain transfer (RAFT) polymerization of a hydrolyzable monomer (tert‐butyldimethylsilyl methacrylate) with cumyl dithiobenzoate and 2‐cyanoprop‐2‐yl dithiobenzoate as chain‐transfer agents was studied in toluene solutions at 70 °C. The resulting homopolymers had low polydispersity (polydispersity index < 1.3) up to 96% monomer conversion with molecular weights at high conversions close to the theoretical prediction. The profiles of the number‐average molecular weight versus the conversion revealed controlled polymerization features with chain‐transfer constants expected between 1.0 and 10. A series of poly(tert‐butyldimethylsilyl methacrylate)s were synthesized over the molecular weight range of 1.0 × 104 to 3.0 × 104, as determined by size exclusion chromatography. As strong differences of hydrodynamic volumes in tetrahydrofuran between poly(methyl methacrylate), polystyrene standards, and poly(tert‐butyldimethylsilyl methacrylate) were observed, true molecular weights were obtained from a light scattering detector equipped in a triple‐detector size exclusion chromatograph. The Mark–Houwink–Sakurada parameters for poly(tert‐butyldimethylsilyl methacrylate) were assessed to obtain directly true molecular weight values from size exclusion chromatography with universal calibration. In addition, a RAFT agent efficiency above 94% was confirmed at high conversions by both light scattering detection and 1H NMR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5680–5689, 2005  相似文献   

5.
Kinetics of the free radical polymerization of styrene at 110 °C has been investigated in the presence of C‐phenyl‐Ntert‐butylnitrone (PBN) and 2,2′‐azobis(isobutyronitrile) (AIBN) after prereaction in toluene at 85 °C. The effect of the prereaction time and the PBN/AIBN molar ratio on the in situ formation of nitroxides and alkoxyamines (at 85 °C), and ultimately on the control of the styrene polymerization at 110 °C, has been investigated. As a rule, the styrene radical polymerization is controlled, and the mechanism is one of the classical nitroxide‐mediated polymerization. Only one type of nitroxide (low‐molecular‐mass nitroxide) is formed whatever the prereaction conditions at 85 °C, and the equilibrium constant (K) between active and dormant species is 8.7 × 10?10 mol L?1 at 110 °C. At this temperature, the dissociation rate constant (kd) is 3.7 × 10?3 s?1, the recombination rate constant (kc) is 4.3 × 106 L mol?1 s?1, whereas the activation energy (Ea,diss.), for the dissociation of the alkoxyamine at the chain‐end is ~125 kJ mol?1. Importantly, the propagation rate at 110 °C, which does not change significantly with the prereaction time and the PBN/AIBN molar ratio at 85 °C, is higher than that for the thermal polymerization at 110 °C. This propagation rate directly depends on the equilibrium constant K and on the alkoxyamine and nitroxide concentrations, as well. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1219–1235, 2007  相似文献   

6.
Poly((2‐Alkylbenzo[1,2,3]triazole‐4,7‐diyl)vinylene)s (pBTzVs) synthesized by Stille coupling show different absorption spectra, solid‐state morphology, and photovoltaic performance, depending on straight‐chain versus branched‐chain (pBTzV12 and pBTzV20) pendant substitution. Periodic boundary condition density functional computations show limited alkyl pendant effects on isolated chain electronic properties; however, pendants could influence polymer backbone conjugative planarity and polymer solid film packing. The polymers are electronically ambipolar, with best performance by pBTzV12 with hole and electron transport mobilities of 4.86 × 10?6 and 1.96 × 10?6 cm2 V?1 s?1, respectively. pBTzV12 gives a smooth film morphology, whereas pBTzV20 gives a very different fibrillar morphology. For ITO/PEDOT:PSS/(1:1 w/w polymer:PC71BM)/LiF/Al devices, pBTzV12 gives power conversion efficiency (PCE) up to 2.87%, and pBTzV20 gives up to PCE = 1.40%; both have open‐circuit voltages of VOC = 0.6–0.7 V. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1539–1545  相似文献   

7.
A membrane osmometer designed for use at pressures greater than 0.1 MPa and less than 6 MPa was employed to determine the pressure coefficient of the equilibrium osmotic pressure (?π/?P) of a dilute polystyrene/toluene solution. The pressure coefficient of the second virial coefficient (?A2/?P), calculated from ?π/?P, was 6 (±4) × 10?5 cm3 mol g?2 MPa?1, which was in reasonable agreement with the value obtained from pressure‐dependent light scattering. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3064–3069, 2003  相似文献   

8.
A multimodular donor–acceptor tetrad featuring a bis(zinc porphyrin)–(zinc phthalocyanine) ((ZnP–ZnP)–ZnPc) triad and bis‐pyridine‐functionalized fullerene was assembled by a “two‐point” binding strategy, and investigated as a charge‐separating photosynthetic antenna‐reaction center mimic. The spectral and computational studies suggested that the mode of binding of the bis‐pyridine‐functionalized fullerene involves either one of the zinc porphyrin and zinc phthalocyanine (Pc) entities of the triad or both zinc porphyrin entities leaving ZnPc unbound. The binding constant evaluated by constructing a Benesi–Hildebrand plot by using the optical data was found to be 1.17×105 M ?1, whereas a plot of “mole‐ratio” method revealed a 1:1 stoichiometry for the supramolecular tetrad. The mode of binding was further supported by differential pulse voltammetry studies, in which redox modulation of both zinc porphyrin and zinc phthalocyanine entities was observed. The geometry of the tetrad was deduced by B3LYP/6‐31G* optimization, whereas the energy levels for different photochemical events was established by using data from the optical absorption and emission, and electrochemical studies. Excitation of the zinc porphyrin entity of the triad and tetrad revealed ultrafast singlet–singlet energy transfer to the appended zinc phthalocyanine. The estimated rate of energy transfer (kENT) in the case of the triad was found to be 7.5×1011 s?1 in toluene and 6.3×1011 s?1 in o‐dichlorobenzene, respectively. As was predicted from the energy levels, photoinduced electron transfer from the energy‐transfer product, that is, singlet‐excited zinc phthalocyanine to fullerene was verified from the femtosecond‐transient spectral studies, both in o‐dichlorobenzene and toluene. Transient bands corresponding to ZnPc ? + in the 850 nm range and C60 ? ? in the 1020 nm range were clearly observed. The rate of charge separation, kCS, and rate of charge recombination, kCR, for the (ZnP–ZnP)–ZnPc ? +:Py2C60 ? ? radical ion pair (from the time profile of 849 nm peak) were found to be 2.20×1011 and 6.10×108 s?1 in toluene, and 6.82×1011 and 1.20×109 s?1 in o‐dichlorobenzene, respectively. These results revealed efficient energy transfer followed by charge separation in the newly assembled supramolecular tetrad.  相似文献   

9.
The free‐radical copolymerization of m‐isopropenyl‐α,α′‐dimethylbenzyl isocyanate (TMI) and styrene was studied with 1H NMR kinetic experiments at 70 °C. Monomer conversion vs time data were used to determine the ratio kp × kt?0.5 for various comonomer mixture compositions (where kp is the propagation rate coefficient and kt is the termination rate coefficient). The ratio kp × kt?0.5 varied from 25.9 × 10?3 L0.5 mol?0.5 s?0.5 for pure styrene to 2.03 × 10?3 L0.5 mol?0.5 s?0.5 for 73 mol % TMI, indicating a significant decrease in the rate of polymerization with increasing TMI content in the reaction mixture. Traces of the individual monomer conversion versus time were used to map out the comonomer mixture composition drift up to overall monomer conversions of 35%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed was observed. This depletion became more pronounced at higher levels of TMI in the initial comonomer mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1064–1074, 2002  相似文献   

10.
Apparent transfer constants have been determined for styrene, methyl methacrylate vinyl acetate, and diethyl maleate polymerized in N-allylstearamide at 90°C. Regression coefficients for transfer were: methyl methacrylate, 0.301 × 10?3; styrene, with no added initiator, 0.582 × 10?3; styrene, initiated with benzoyl peroxide, 0.830 × 10?3; vinyl acetate, 62.01 × 10?3; and diethyl maleate, 2.24 × 10?3. Rates of polymerization were retarded for both styrene and methyl methacrylate. Vinyl monomer and comonomer disappearance followed an increasing exponential dependence on both initiator and monomer concentration. Although degradative chain transfer probably caused most of the retardation, the cross-termination effect was not eliminated as a contribution factor. Rates for the vinyl acetate copolymerization were somewhat retarded, even though initiator consumption was large because of induced decomposition. The kinetic and transfer data indicated that the reactive monomers added radicals readily, but that rates were lowered by degradative chain transfer. Growing chains were terminated at only moderate rates of transfer. Unreactive monomers added radicals less easily, producing reactive radicals, which transferred rapidly, so that molecular weights were lowered precipitously. Although induced initiator decomposition occurred, rates were still retarded by degradative chain transfer. A simple empirical relation was found between the reciprocal number-average degree of polymerization, 1/X?n1 and the mole fraction of allylic comonomer entering the copolymer F2, which permitted estimation of the molecular weight of copolymers of vinyl monomers with allylic comonomers. This equation should be applicable when monomer transfer constants for each homopolymer are known and when osmometric molecular weights of one or two copolymers of low allylic content have been determined.  相似文献   

11.
Monoterpenes were used as renewable chain transfer agents and polymerization solvents for metallocene/methylaluminoxane (MAO) catalysis. The polymerization of 1‐hexene, ethylene, and propylene in d‐limonene, hydrogenated d‐limonene and α‐pinene is reported. As detected by 1H NMR analysis of the alkene region, chain transfer to d‐limonene yielded a higher percentage of trisubstituted alkenes. Size exclusion chromatography detected a decrease in molecular weight values resulting from chain transfer to d‐limonene. The [mmmm] pentads for isotactic polypropylene were characterized by 13C NMR and FTIR spectroscopy. Propylene polymerizations with the Et(Ind)2ZrCl2/MAO and Me2Si(Ind)2ZrCl2/MAO catalyst systems in d‐limonene gave [mmmm] pentad values as high as 0.97. For the Et(Ind)2ZrCl2/MAO catalyst system at 0 °C, the mol fraction of [mmmm] pentads increased from 0.86 to 0.94 upon switching the solvent from toluene to d‐limonene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3150–3165, 2007  相似文献   

12.
2‐[(N‐Benzyl‐N‐methylamino)methyl]‐1,3‐butadiene (BMAMBD), the first asymmetric tertiary amino‐containing diene‐based monomer, was synthesized by sulfone chemistry and a nickel‐catalyzed Grignard coupling reaction in high purity and good yield. The bulk and solution free‐radical polymerizations of this monomer were studied. Traditional bulk free‐radical polymerization kinetics were observed, giving polymers with 〈Mn〉 values of 21 × 103 to 48 × 103 g/mol (where Mn is the number‐average molecular weight) and polydispersity indices near 1.5. In solution polymerization, polymers with higher molecular weights were obtained in cyclohexane than in tetrahydrofuran (THF) because of the higher chain transfer to the solvent. The chain‐transfer constants calculated for cyclohexane and THF were 1.97 × 10?3 and 5.77 × 10?3, respectively. To further tailor polymer properties, we also completed copolymerization studies with styrene. Kinetic studies showed that BMAMBD incorporated into the polymer chain at a faster rate than styrene. With the Mayo–Lewis equation, the monomer reactivity ratios of BMAMBD and styrene at 75 °C were determined to be 2.6 ± 0.3 and 0.28 ± 0.02, respectively. Altering the composition of BMAMBD in the copolymer from 17 to 93% caused the glass‐transition temperature of the resulting copolymer to decrease from 64 to ?7 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3227–3238, 2001  相似文献   

13.
Vinyl thiocyanatoacetate (VTCA) was synthesized, and its radical polymerization behavior was studied in acetone with dimethyl 2,2′‐azobisisobutyrate (MAIB) as an initiator. The initial polymerization rate (Rp) at 60 °C was expressed by Rp = k[MAIB]0.6±0.1 [VTCA]1.0±0.1 where k is a rate constant. The overall activation energy of the polymerization was 112 kJ/mol. The number‐average molecular weights of the resulting poly (VTCA)s (1.4–1.6 × 104) were almost independent of the concentrations of the initiator and monomer, indicating chain transfer to the monomer. The chain‐transfer constant to the monomer was estimated to be 9.6 × 10?3 at 60 °C. According to the 1H and 13C NMR spectra of poly (VTCA), the radical polymerization of VTCA proceeded through normal vinyl addition and intramolecular transfer of the cyano group. The cyano group transfer became progressively more important with decreasing monomer concentration. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 573–582, 2002; DOI 10.1002/pola.10137  相似文献   

14.
The branched triazole group is synthesized by click chemistry via a controlled approach of slow addition of AB2 compound to a B2 core, and used as the substituent for 1,6‐heptadiyne monomer. Metathesis cyclopolymerization of monomer is performed well in dichloromethane without the weakly coordinating additive, indicating that the branched triazole itself can stabilize the living propagating chain, to generate branched triazole pendant‐contained polyacetylene with trans‐double bonds and five‐membered ring repeating units along the conjugated backbone. The LiTFSI doped polyacetylenes display ionic conductivities of 2.5–1.8 × 10?6 S cm?1; by further doping with iodine, polyacetylenes show the improved ionic and electronic conductivities of 1.3 × 10?5 and 2.1 × 10?7 S cm?1 at 30 °C, respectively. Therefore, these doped polyacetylenes may act as the new electrolyte materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 485–494  相似文献   

15.
A tridentate ligand, BPIEP: 2,6‐bis[1‐(2,6‐diisopropyl phenylimino) ethyl] pyridine, having central pyridine unit and two peripheral imine coordination sites was effectively employed in controlled/“living” radical polymerization of MMA at 90°C in toluene as solvent, CuIBr as catalyst, and ethyl‐2‐bromoisobutyrate (EBiB) as initiator resulting in well‐defined polymers with polydispersities Mw/Mn ≤ 1.23. The rate of polymerization follows first‐order kinetics, kapp = 3.4 × 10?5 s?1, indicating the presence of low radical concentration ([P*] ≤ 10?8) throughout the reaction. The polymerization rate attains a maximum at a ligand‐to‐metal ratio of 2:1 in toluene at 90°C. The solvent concentration (v/v, with respect to monomer) has a significant effect on the polymerization kinetics. The polymerization is faster in polar solvents like, diphenylether, and anisole, as compared to toluene. Increasing the monomer concentration in toluene resulted in a better control of polymerization. The molecular weights (Mn,SEC) increased linearly with conversion and were found to be higher than predicted molecular (Mn,Cal). However, the polydispersity remained narrow, i.e., ≤1.23. The initiator efficiency at lower monomer concentration approaches a value of 0.7 in 110 min as compared to 0.5 in 330 min at higher monomer concentration. The aging of the copper salt complexed with BPIEP had a beneficial effect and resulted in polymers with narrow polydispersitities and higher conversion. PMMA obtained at room temperature in toluene (33%, v/v) gave PDI of 1.22 (Mn = 8500) in 48 h whereas, at 50°C the PDI is 1.18 (Mn = 10,300), which is achieved in 23 h. The plot of lnkapp versus 1/T gave an apparent activation energy of polymerization as (ΔEapp) 58.29 KJ/mol and enthalpy of equilibrium (ΔH0eq) to 28.8 KJ/mol. Reverse ATRP of MMA was successfully performed using AIBN in bulk as well as solution. The controlled nature of the polymerization reaction was established through kinetic studies and chain extension experiments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4996–5008, 2005  相似文献   

16.
Cu(I)Br/Me6‐TREN species are unstable and disproportionate into metallic Cu(0) and Cu(II)Br2/Me6‐TREN in DMSO, whereas in toluene are stable and do not undergo disproportionation, at least at 25 °C. To estimate the role of the disproportionating solvent in single electron‐transfer living radical polymerization (SET‐LRP) a comparative analysis of Cu(0)/Me6‐TREN‐catalyzed polymerization of MA initiated with methyl 2‐bromopropionate at 25 °C was performed in DMSO and toluene. A combination of kinetic experiments and chain end analysis by 500‐MHz 1H NMR spectroscopy was used to demonstrate that disproportionation represents the crucial requirement for a successful SET‐LRP of MA at 25 °C. In DMSO a perfect SET‐LRP occurs and yields close to 100% conversion in 45 min. A first order polymerization in growing species up to 100% conversion and a PMA with perfectly functional chain ends are obtained. However, in toluene within 17 h only about 60% conversion is obtained, the polymerization does not show first order in growing species and therefore is not a living polymerization. Moreover, at 60% conversion the resulting PMA has only 80% active chain ends. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6880–6895, 2008  相似文献   

17.
In this study, single electron transfer‐living radical polymerization (SET–LRP) of N‐isopropylacrylamide (NIPAM) in the presence of 2‐mercaptoethylamine chain transfer agent (CTA) was carried out by Cu(0) generated in situ from the disproportionation of CuBr/2,2′‐bipyridine (2,2′‐bpy) in N,N‐dimethylformamide (DMF) at 90 °C. Analysis of polymerization kinetics in the presence of CTA showed that the premature termination of growing polymer chains leads to retardation. The apparent rate constant of polymerization (k) decreased from 4.49 × 10?4 to 2.59 × 10?4 min?1 with increasing CTA concentration. The initiator efficiency (Ieff) and the chain transfer constant (Cs) were found to be 0.524 and 0.286, respectively. The molecular weights of poly(N‐isopropylacrylamide) [poly(NIPAM)] produced were significantly higher than the predicted values, and the polydispersities were less than 1.22. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The sterically hindered, 1,1‐disubstituted monomers di‐n‐butyl itaconate (DBI), dicyclohexyl itaconate (DCHI), and dimethyl itaconate (DMI) were polymerized with reversible addition–fragmentation chain transfer (RAFT) free‐radical polymerization and atom transfer radical polymerization (ATRP). Cumyl dithiobenzoate, cumyl phenyl dithioacetate, 2‐cyanoprop‐2‐yl dithiobenzoate, 4‐cyanopentanoic acid dithiobenzoate, and S‐methoxycarbonylphenylmethyl dithiobenzoate were employed as RAFT agents to mediate a series of polymerizations at 60 °C yielding polymers ranging in their number‐average molecular weight from 4500 to 60,000 g mol?1. The RAFT polymerizations of these hindered monomers displayed hybrid living behavior (between conventional and living free‐radical polymerization) of various degrees depending on the molecular structure of the initial RAFT agent. In addition, DCHI was polymerized via ATRP with a CuCl/methyl benzoate/N,N,N′,N″,N″‐pentamethyldiethylenetriamine/cyclohexanone system at 60 °C. Both the ATRP and RAFT polymerization of the hindered monomers displayed living characteristics; however, broader than expected molecular weight distributions were observed for the RAFT systems (polydispersity index = 1.15–3.35). To assess the cause of this broadness, chain‐transfer‐to‐monomer constants for DMI, DBI, and DCHI were determined (1.4 × 10?3, 1.3 × 10?3, and 1.0 × 10?3, respectively) at 60 °C. Simulations carried out with the PREDICI program package suggested that chain transfer to monomer contributed to the broadening process. In addition, the experimental results indicated that viscosity had a pronounced effect on the broadness of the molecular weight distributions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3692–3710, 2006  相似文献   

19.
The rate constants for the gas‐phase reactions of three deuterated toluenes with hydroxyl radicals were measured using the relative rate technique over the temperature range 298–353 K at about 1 atm total pressure. The OH radicals were generated by photolysis of H2O2, and helium was used as the diluent gas. The disappearance of reactants was followed by online mass spectrometry, which resulted in high time resolution, allowing for a large amount of data to be collected and used in the determination of the Arrhenius parameters. The following Arrhenius expressions have been determined for these reactions (in units of cm3 molecule?1 s?1): k=(6.42?0.99+1.17)×10?13exp [(661±54)/T] for toluene‐d3, k=(2.11?0.69+1.03)×10?12exp [(287±128)/T]for toluene‐d5, and k=(1.40+0.44?0.33)×10?12exp [(404±88)/T]for toluene‐d8. The kinetic isotope effects (KIEs, kH/kD) of these reactions were 1.003 ± 0.042 for all three compounds at 298 K. The KIE for toluene‐d3 was temperature dependent; at 350 K, its KIE was 1.122+0.048?0.046. The KIE of toluene‐d5 and toluene‐d8 did not vary significantly with temperature. These KIE results suggest that methyl H‐atom abstraction is more important than aromatic OH addition at higher temperatures. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 821–827, 2012  相似文献   

20.
Poly{2,6‐bis(3‐dodecylthiophen‐2‐yl) benzo[1,2‐b;4,5‐b′]dithiophene} (PTBT) was synthesized, via oxidative polymerization by oxidative agent (FeCl3). The mole ratio of FeCl3 and monomer (3.5:1), and keeping low temperature during the dropping of diluted catalyst were very important for the polymerization without crosslinking. The PTBT was confirmed by 1H NMR, FTIR spectra, and elemental analysis. The PTBT has very good solubility in organic solvents such as chloroform, tetrahydrofuran, etc, and good thermal stability with Tg of 164 °C. The PTBT shows UV‐optical absorption at 406 nm and photoluminescence (PL) spectroscopy at 504 nm in a film. The highest occupied molecular orbital (HOMO) energy of the polymer is ?5.71 eV by measuring cyclic voltammetry (CV). A solution‐processed polymer thin film transistor device shows a mobility of 3 × 10?5 – 8 × 10?5 cm2 V?1 s?1, and an on/off current ratio of 104. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5277–5284, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号