首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anion‐exchange membranes containing pendant benzimidazolium groups were synthesized from polysulfone by chrolomethylation followed by nucleophilic substitution reaction with 1‐methylbenzimidazole. The structures of the polymers were characterized by 1H‐NMR and FTIR analysis. The resulting membranes showed high thermal stability below 200 °C. The values of water uptake and swelling degree increased with the ion‐exchange capacity of the polymeric membrane. The ionic conductivity was measured by means of impedance spectroscopy in aqueous solution of potassium hydroxide (10?4?10?1 M). The results show not only a clear correlation between the membrane's electrochemical behavior with the electrolyte solution embedded in the membrane, but also with the degree of the polysulfone's chloromethylation.Thus, the ionic conductivity increased more than two orders of magnitude when the degree of chloromethylation increased from 40 to 140%. Benzimidazolium‐functionalized polysulfones exhibited better thermal, mechanical, and electrochemical properties than the widely used polymeric membranes containing quaternary ammonium groups. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2363–2373  相似文献   

2.
The effect of doping P3OT with ferric chloride on the attachment and proliferation of MC3T3‐E1 osteoblasts is reported. Cell density and area correlated strongly with doping concentration: cells were larger and exhibited better spreading as doping increased. Cells cultured on undoped P3OT showed a decrease in proliferation between 24 and 48 h followed by a recovery after 72 h. However, this trend diminished with increasing doping concentration, and disappeared completely at the highest dopant level investigated. Analysis of cell‐cell spatial distributions suggested that contact inhibition of proliferation occurred similarly on both undoped and doped P3OT. From these results, FeCl3‐doping had no significant deleterious effect on attachment or proliferation of osteoblasts in vitro.

  相似文献   


3.
Stimuli‐responsive hydrogels are continuing to increase in demand in biomedical applications. Occluding a blood vessel is one possible application which is ideal for a hydrogel because of their ability to expand in a fluid environment. However, typically stimuli‐responsive hydrogels focus on bending instead of radial uniform expansion, which is required for an occlusion application. This article focuses on using an interdigitated electrode device to stimulate an electro‐responsive hydrogel in order to demonstrate a uniform swelling/deswelling of the hydrogel. A Pluronic‐bismethacrylate (PF127‐BMA) hydrogel modified with hydrolyzed methacrylic acid, in order to make it electrically responsive, is used in this article. An interdigitated electrode device was manufactured containing Platinum electrodes. The results in this paper show that the electrically biased hydrogels deswelled 230% more than the non‐biased samples on average. The hydrogels deswelled uniformly and showed no visual deformations due to the electrical bias. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1523–1528  相似文献   

4.
Tailor‐made polymers containing specific chemical functionalities have ushered in a number of emerging fields in polymer science. In most of these next‐generation applications the focus of the community has centered upon closed‐shell macromolecules. Conversely, macromolecules containing stable radical sites have been less studied despite the promise of this evolving class of polymers. In particular, radical‐containing macromolecules have shown great potential in magnetic, energy storage, and biomedical applications. Here, the progress regarding the syntheses of open‐shell containing polymers are reviewed in two distinct subclasses. In the first, the syntheses of radical polymers (i.e., materials composed of non‐conjugated macromolecular backbones and with open‐shell units present on the polymer pendant sites) are described. In the second, polyradical (i.e., macromolecules containing stabilized radical sites either within the macromolecular backbone or those containing radical sites that are stabilized through a large degree of conjugation) synthetic schemes are presented. Thus, the state‐of‐the‐art in open‐shell macromolecular syntheses will be reported and future means by which to advance the current archetype will be discussed. By detailing the synthetic pathways possible for, and the inherent synthetic limitations of, the creation of these functional polymers, the community will be able to extend the bounds of the radical‐containing macromolecular paradigm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1875–1894  相似文献   

5.
We demonstrate here a remarkable electrochemical activation of polypyrrole chains by doping with redox‐active diphenylamine sulfonate anions. The organic redox dopant can not only serve as anionic counterions to enhance electrochemical activity of the polymer chains, but also contributes their redox capacity to the material. This organic‐polymer composite exhibits a quite high reversible capacity of 115 mA h g?1, excellent rate capability and cycling stability, capable of serving as a low cost, and renewable cathode for Na‐ion batteries. Since the chemical doping method is simple and easily extendable for a large variety of organic anions and polymer networks, it is possible to adopt this new strategy for creating low cost and electrochemically active polymer materials for widespread electric storage applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

6.
Metal cation‐based anion exchange membranes (AEMs) are a unique class of materials that have shown potential to be highly stable AEMs with competitive conductivities. Here, we expand upon previous work to report the synthesis of crosslinked nickel cation‐based AEMs formed using the thiol–ene reaction. These thiol–ene‐based samples were first characterized for their morphology, both with and without nickel cations, where the nickel‐containing membranes demonstrated a disordered scattering peak characteristic of ionic clusters. The samples were then characterized for their water uptake, chemical and mechanical stability, and conductivity. They showed a combination of high water content and extreme brittleness, which also resulted in fairly low conductivity. The brittleness resulted from large water swelling as well as the need for each nickel cation to act as a crosslinker, necessary with the current nickel‐coordination chemistry. Therefore, increasing the ion exchange capacity (IEC) for these types of AEMs, important for enhancing conductivity, also increased the crosslink density. The low conductivity and brittleness seen in this work demonstrated the need to develop non‐crosslinking metal‐complexes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 328–339  相似文献   

7.
The range of application of polyurethanes has been limited by their poor hemocompatibility and inability to resist non‐specific binding of biomolecules and cells. In this work, a non‐adhesive PU‐based material was synthesized via the copolymerization of PU with dermatan sulfate. Incorporation of DS into the PU backbone dramatically increased material hydrophilicity and decreased protein adsorption. The in vitro adhesion of several cell types, including platelets, also significantly decreased with increasing DS content. Both the physical and biological properties of the DS contributed to the anti‐adhesive properties of the PU/DS copolymer, and this anti‐adhesive nature of PU/DS renders this new biomaterial attractive for blood‐contacting or non‐fouling applications.

  相似文献   


8.
This article reports a simple self‐assembly process for facile one‐step synthesis of novel electromagnetic functionalized polypyrrole (PPy)/Fe3O4 composite nanotubes using p‐toluenesulfonic acid (p‐TSA) as the dopant and FeCl3 as the oxidant. The key trick of the present method is to use FeCl3 as the oxidant for both PPy and Fe3O4 in the same time to synthesize PPy/Fe3O4 composite nanotubes in one‐step. This facile one‐step method is much simpler than the conventional approach using the Fe3O4 nanoparticles as the additives. Compared to the similar composites synthesized using the conventional method, the as‐prepared PPy‐p‐TSA/Fe3O4 composite nanotubes using the facile one‐step self‐assembly process show much higher room‐temperature conductivity. Moreover, the composite nanotubes display interesting ferromagnetic behavior. The electrical properties of the PPy‐p‐TSA/Fe3O4 composite nanotubes are dominated by the amount of FeCl3 while their magnetic properties are controlled by the amount of FeCl2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 320–326, 2010  相似文献   

9.
Two neutral precursor conjugated copolymers based 2,7‐diethynylfluorene and 3,6‐diethynylcarbazole units in the main chain ( PFC and PF2C ) were prepared by Hay coupling polymerization. Their cationic copolymers ( CPFC and CPF2C ) were prepared by the methylation of their diethylpropylamino groups with CH3I. For comparison, neutral conjugated homopolymers of 2,7‐diethynylfluorene ( PF ), 3,6‐diethynylcarbazole units ( PC ) and their cationic polymers ( CPF and CPC ) were also prepared with the same method. A comparative study on the optical properties of cationic polymers CPFC and CPF2C in DMF and DMF/H2O showed that they underwent water‐induced aggregation. The spectral behaviors of CPFC and CPF2C with calf thymus DNA showed that a distinct fluorescent quenching took place with minute addition of CT DNA (3.3 × 10?13 M). The results showed that the polymers would be promising biosensor materials for sensitive detection of DNA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4168–4177, 2010  相似文献   

10.
Antimicrobial polymers have been widely reported to exert strong biocidal effects against bacteria. In contrast with antimicrobial polymers with aliphatic ammonium groups, polymers with anilinium groups have been rarely studied and applied as biocidal materials. In this study, a representative polymer with aniline side functional groups, poly(N,N‐dimethylaminophenylene methacrylamide) (PDMAPMA), was explored as a novel antimicrobial polymer. PDMAPMA was synthesized and its physicochemical properties evaluated. The methyl iodide‐quaternized polymer was tested against the Gram‐positive Staphylococcus aureus, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 16–32 and 64–128 μg mL?1, respectively. Against the Gram‐negative Escherichia coli, the MIC and MBC were both 64–128 μg mL?1. To broaden the range of applications, PDMAPMA was coated on substrates via crosslinking to endow the surface with contact‐kill functionality. The effect of charge density of the coatings on the antimicrobial behavior was then investigated, and stronger biocidal performance was observed for films with higher charge density. This study of the biocidal behavior of PDMAPMA both in solution and as coatings is expected to broaden the application of polymers containing aniline side groups and provide more information on the antimicrobial behavior of such materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1908–1921  相似文献   

11.
Polycarbosilanes with or without sugar‐derived structures in the polymer side chains were synthesized and their application to materials for cell cultivation was investigated. Polysilacyclobutanes having glucose‐derived moieties or N‐acetylglucosamine‐derived moieties (polyBMSB‐glucose and polyBMSB‐AGA) were synthesized by ene‐thiol reaction between precursor poly(1‐(3‐butenyl)?1‐methylsilacyclubane) (polyBMSB) and tetraacetylglucose or tetraacetylglucosamine having a thiol group at the anomeric position and the successive deprotection of the acetyl groups gave polycarbosilanes with sugar‐derived structures in the side chains. Poly(1‐(3‐hydroxybutyl)‐1‐methylsilacyclobutane) was synthesized by hydroboration/oxidation of the precursor polyBMSB. The cell cultivation efficiency using the polymers with or without sugar moieties was evaluated by cultivation of WRL cells on the polystyrene dishes coated with the polymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2267–2272  相似文献   

12.
Summary: To develop ionic polymer‐metal composites (IPMC) with improved performance, three new ion‐exchange membranes were prepared and employed in IPMC construction. The membranes were prepared by radiation‐grafting of polystyrene sulfonic acid onto three fluoropolymers; poly(vinylidenefluoride‐co‐hexafluoropropylene), poly(ethylene‐co‐tetrafluoroethylene), and poly(tetrafluoroethylene‐co‐hexafluoropropylene). The bending displacements of the IPMCs constructed with these membranes were at least several times larger than that of Nafion IPMC of similar thickness without straightening‐back. The larger displacement was considered to be due to the higher concentration of ionic groups and consequent larger ion‐exchange capacity.

Actuation of (a) Nafion IPMC and (b) IPMC prepared in this study.  相似文献   


13.
Strategies to surface‐functionalize scaffolds by covalent binding of biologically active compounds are of fundamental interest to control the interactions between scaffolds and biomolecules or cells. Poly(para‐dioxanone) (PPDO) is a clinically established polymer that has shown potential as temporary implant, eg, for the reconstruction of the inferior vena cava, as a nonwoven fiber mesh. However, PPDO lacks suitable chemical groups for covalent functionalization. Furthermore, PPDO is highly sensitive to hydrolysis, reflected by short in vivo half‐life times and degradation during storage. Establishing a method for covalent functionalization without degradation of this hydrolyzable polymer is therefore important to enable the surface tailoring for tissue engineering applications. It was hypothesized that treatment of PPDO with an N‐hydroxysuccinimide ester group bearing perfluorophenyl azide (PFPA) under UV irradiation would allow efficient surface functionalization of the scaffold. X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier‐transformed infrared spectroscopy investigation revealed the successful binding, while a gel permeation chromatography study showed that degradation did not occur under these conditions. Coupling of a rhodamine dye to the N‐hydroxysuccinimide esters on the surface of a PFPA‐functionalized scaffold via its amine linker showed a homogenous staining of the PPDO in laser confocal microscopy. The PFPA method is therefore applicable even to the surface functionalization of hydrolytically labile polymers, and it was demonstrated that PFPA chemistry may serve as a versatile tool for the (bio‐)functionalization of PPDO scaffolds.  相似文献   

14.
In this article, we report an efficient method for the synthesis of thymine‐functionalized polystyrene microspheres. First, poly(styrene‐co‐4‐chloromethylstyrene) copolymers slightly crosslinked with divinylbenzene were synthesized in batch free‐radical emulsion copolymerization. Microspheres with a particle size of ~40–70 nm were obtained with greater than 99% conversion. The chloromethylstyrene (CMS) groups were then converted into thymylmethylstyrene (TMS) in a two‐phase system with greater than 80% efficiency, and up to a 45 mol % thymine loading was achieved. The functionalized microspheres were characterized by elemental analysis, Fourier transform infrared, and X‐ray photoelectron spectroscopy. The analyses revealed partial hydrolysis of the CMS functionalities, yielding hydroxymethyl functional groups in addition to the thymine functionalities. These copolymers have potential applications in biotechnology. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5545–5553, 2005  相似文献   

15.
16.
Electroactive actuators based on conductive polymers currently have attracted a great deal of attention. In this study, a nanofibrous structure of polypyrrole (PPy) was used to fabricate an electroactive bending actuator. For this purpose, polyurethane/PPy (PU/PPy) nanofibrous bending actuator was fabricated through the combined use of electrospinning and in‐situ chemical polymerization. The response surface methodology (RSM) was considered to find the optimal electrospinning conditions for producing PU nanofibers with the minimum diameter. The in‐situ chemical polymerization method was then used to prepare a conductive layer of PPy on the surface of optimum electrospun nanofibers with p‐toluenesulfonate (pTS) as the dopant. The coated nanofibers were used in the fabrication of PU/PPy‐pTS nanofibrous bending actuator. The morphology and electrical, thermal, electrochemical, and electrochemomechanical properties of the fabricated actuator were investigated. By using optimum conditions of electrospinning, PU nanofibers were obtained with a diameter of 221 nm. The results showed that the produced PU/PPy‐pTS nanofibers enjoy good thermal stability and have an electrical conductivity of about 276.34 S/cm. The obtained cyclic voltammetric and dynamo‐voltammetric responses showed that the dominant mechanism of actuation in the fabricated PU/PPy‐pTS nanofibrous actuator is the exchange of perchlorate anions with a partial exchange of lithium cations in 1M lithium perchlorate electrolyte solution. The fabricated actuator was capable of undergoing 141° reversible angular displacement during a potential cycle. The results demonstrated that, given high porosity, large specific surface area, flexibility, and desirable electrical properties, PU/PPy nanofibrous electroactive actuator provides a lot of potential for developing artificial muscle applications.  相似文献   

17.
Polymer‐protein conjugates are biohybrid macromolecules derived from covalently connecting synthetic polymers with polypeptides. The resulting materials combine the properties of both worlds: chemists can engineer polymers to stabilize proteins, to add functionality, or to enhance activity; whereas biochemists can exploit the specificity and complexity that Nature has bestowed upon its macromolecules. This has led to a wealth of applications, particularly within the realm of biomedicine. Polymer‐protein conjugation has expanded to include scaffolds for drug delivery, tissue engineering, and microbial inhibitors. This feature article reflects upon recent developments in the field and discusses the applications of these hybrids from a biomaterials standpoint.

  相似文献   


18.
In routine clinical procedures, blood transfusion is now suffering from the defects of the blood products, like cross-matching, short storage time and virus infection. Various blood substitutes have been designed by researchers through continual efforts. With recent progress in nanotechnology, new types of artificial red blood cells with cellular structure are available. This article aims to describe some artificial red blood cells which encapsulate or conjugate hemoglobin molecules through various approaches, especially the nanoscale self-assembly technique, to mitigate the adverse effects of free hemoglobin molecules. These types of artificial red blood cell systems, which make use of biodegradable polymers as matrix materials, show advantages over the traditional types.  相似文献   

19.
The term hydrogel describes a type of soft and wet material formed by cross‐linked hydrophilic polymers. The distinct feature of hydrogels is their ability to absorb a large amount of water and swell. The properties of a hydrogel are usually determined by the chemical properties of their constituent polymer(s). However, a group of hydrogels, called “smart hydrogels,” changes properties in response to environmental changes or external stimuli. Recently, DNA or DNA‐inspired responsive hydrogels have attracted considerable attention in construction of smart hydrogels because of the intrinsic advantages of DNA. As a biological polymer, DNA is hydrophilic, biocompatible, and highly programmable by Watson‐Crick base pairing. DNA can form a hydrogel by itself under certain conditions, and it can also be incorporated into synthetic polymers to form DNA‐hybrid hydrogels. Functional DNAs, such as aptamers and DNAzymes, provide additional molecular recognition capabilities and versatility. In this Review, DNA‐based hydrogels are discussed in terms of their stimulus response, as well as their applications.

  相似文献   


20.
This study is aimed at investigating the microbiocidal potential of amino‐functionalized poly(norbornenes) in the solid state. A series of norbornene‐type monomers that carry secondary or tertiary amine functions as well as hexyl and dodecyl groups were prepared. Ring‐opening metathesis polymerization was used to prepare homopolymers of the amine bearing monomers and random copolymers of amine‐ and alkyl‐substituted monomers of high average molar mass. The resulting polymers were characterized by nuclear magnetic resonance, thermogravimetry, differential scanning calorimetry, infrared spectroscopy, and contact angle measurements, and their contact biocidal potential was evaluated according to the Japanese Industry standard Z2801. Tested microorganisms comprised Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, and Aspergillus niger. Microbiocidal activity of selected polymer films against E. coli, S. aureus, and A. niger was found, whereas against C. albicans and P. aeruginosa microbiostatic behavior was observed. Moreover, the most potent copolymer revealed no cytotoxicity rendering a biocidal polymer with potential applications in mammalian‐, and in particular, human‐related fields. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号