首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diastereoselective photodependent isomerization equilibrium of E/Z‐1,3‐ditolyl‐5‐[3‐oxobenzofuran‐2(3H)‐ylidene]imidazolidine‐2,4‐dione ( 5 ) is reported. Both diastereomers E-5 and Z-5 are stereochemically stable in solid state but show significant photosensibility in solutions of halogenated solvent. The photoisomerization equilibrium of E/Z‐ 5 is therefore deduced from the 1H NMR profile after visible‐light irradiation of both E-5 and Z-5 samples. The results of the kinetic study, monitored by UV‐HPLC, reveal that the E/Z equilibrium is diastereoselective and photodependent, being the transformation E ? Z proceeding faster than that of Z ? E, and the E/Z ratio at the equilibrium depends on the used solvent, light source, and temperature. Both diastereomers are visible‐light photosensitive tending to coexist together in equilibrium solutions at a determined ratio, which is always in favor of the Z‐product assuming a minimum thermodynamic energy and an increased entropy of the system. Time‐dependent density functional theory calculations suggest that the photoisomerization mechanism proceeds via a conical intersection involving the first‐excited state: Upon irradiation, the E-5 isomer is excited to the S1 potential energy surface, where it relaxes through rotation of the C=C bond and reaches a conical intersection with the ground‐state potential energy surface, thus yielding the Z-5 isomer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The experimental 1H and 13C NMR spectra of 13 phenyl cinnamates and four 4‐methylcoumarins were investigated and their chemical shifts assigned on the basis of the two‐dimensional spectra. For the unsubstituted cinnamic acid phenyl ester, optimized molecular structures were calculated at a B3LYP/6‐311++G(d,p) level of theory. 1H and 13C NMR chemical shifts were also calculated with the GIAO method at the B3LYP/6‐311 + G(2d,p) level of theory. The comparison between experimental and calculated NMR chemical shift suggests that the experimental spectra are formed from the superposition spectra of the two lowest energy conformers of the compound in solution. The most stable s‐cis configuration found in our studies is also the conformation adopted for a related phenyl cinnamate in solid state. The experimental results were analyzed in terms of the substituent effects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The first conformational analysis of 3‐silathiane and its C‐substituted derivatives, namely, 3,3‐dimethyl‐3‐silathiane 1 , 2,3,3‐trimethyl‐3‐silathiane 2 , and 2‐trimethylsilyl‐3,3‐dimethyl‐3‐silathiane 3 was performed by using dynamic NMR spectroscopy and B3LYP/6‐311G(d,p) quantum chemical calculations. From coalescence temperatures, ring inversion barriers ΔG for 1 and 2 were estimated to be 6.3 and 6.8 kcal/mol, respectively. These values are considerably lower than that of thiacyclohexane (9.4 kcal/mol) but slightly higher than the one of 1,1‐dimethylsilacyclohexane (5.5 kcal/mol). The conformational free energy for the methyl group in 2 (?ΔG° = 0.35 kcal/mol) derived from low‐temperature 13C NMR data is fairly consistent with the calculated value. For compound 2 , theoretical calculations give ΔE value close to zero for the equilibrium between the 2 ‐Meax and 2 ‐Meeq conformers. The calculated equatorial preference of the trimethylsilyl group in 3 is much more pronounced (?ΔG° = 1.8 kcal/mol) and the predominance of the 3 ‐SiMe3 eq conformer at room temperature was confirmed by the simulated 1H NMR and 2D NOESY spectra. The effect of the 2‐substituent on the structural parameters of 2 and 3 is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
2‐Ethylhexyl 4‐methoxycinnamate (EHMC) is a very commonly used UVB filter that is known to isomerize from the (E) to the (Z) isomer in the presence of light. In this study, we have performed high level quantum chemical calculations using density functional theory (DFT) with the B3LYP density functional and extended basis sets to study the gas‐phase molecular structure of EHMC and its energetic stability. Calculations were also performed for related smaller molecules cinnamic acid and 4‐methoxycinnamic acid. Charge delocalization has been analyzed using natural charges and Wiberg bond indexes within the natural bond orbital analysis and using nucleus independent chemical shifts. Density functional theory calculations reveal that the (E) isomer of EHMC is more stable than the (Z) by about 20 kJ mol?1 in both the gas and aqueous phases. The enthalpy of formation in the gas phase of (E)‐EHMC was derived from an isodesmic bond separation reaction. Long‐range corrected DFT calculations in implicit water were made in order to understand the excited state properties of the (E) and (Z) isomers of EHMC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The most probable time‐averaged conformations of three polyammonium cations Hn 2 n+ (n = 3–5) formed from the macrocyclic pentamine ligand ( 2 , scorpiand) [derivative of 1,4,8,11‐tetraazacyclotetradecane (cyclam)] were analyzed in order to elucidate an origin of ‘wrong‐way’ amine‐protonation shifts found in some 13C NMR pH‐profiles determined for the acidic H2O/D2O solution. These NMR trends were reproduced quite well in δCs computed for multicomponent shapes of related cations, which were in turn elucidated by the best fitting experimental data to those predicted by the gauge‐independent atomic orbital (GIAO) B3LYP/6‐31G* method, including the IEF‐PCM approach. A consistent DFT methodology of the treatment of such equilibrated cationic mixtures is proposed. Moreover, a few novel ONIOM2‐GIAO B3LYP/6‐31G*:STO‐3G type supermolecular calculations were performed for a simulated presence of bulk water molecules surrounding H5 2 5+. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
An earlier study fit calculated dynamic 13C‐NMR spectra in trifluoroacetic acid (TFA) (with added sulfuric acid) to slow exchange between N‐protonated and O‐protonated tautomers of 1‐azabicyclo[3.3.1]nonan‐2‐one. The present study reports simultaneous observation of both carbonyl 13C peaks in 40% sulfuric acid/60% TFA at ?40 °C. This furnishes the only example in which experimental carbonyl 13C chemical shifts may be compared with a neutral lactam (in TFA or CDCl3) with its N‐protonated and O‐protonated derivatives. The seemingly anomalous upfield chemical shifts (experimental and computational) of the 13C carbonyl peaks in this N‐protonated lactam (and other twisted N‐protonated lactams) relative to the free bases are compared with data for unstrained protonated lactams and amides. The results are rationalized through conventional resonance structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Disproportionation of cyclic nitroxyl radicals (NRs) in acid solutions is of key importance for the chemistry of these compounds. Meanwhile, the data reported on the mechanism of this reaction in dilute acids are inconsistent with those on the stability of NRs in concentrated acids. Here we have examined the kinetics and stoichiometry for the disproportionation of 2,2,6,6‐tetramethylpiperidine‐1‐oxyl ( 1 ) in aqueous H2SO4 (1.0–99.3 wt%) and found that (1) the disproportionation of 1 proceeds by the same mechanism over the entire range of acid concentrations, (2) the effective rate constant of the process exhibits a bell‐shaped dependence on the excess acidity function X peaked at X = ?pK 1H+ = 5.8 ± 0.3, (3) a key step of the process involves the oxidation of 1 with its protonated counterpart 1H + yielding oxopiperidinium cation 2 and hydroxypiperidine 3 at a rate constant of (1.4 ± 0.8) × 105 M?1 · s?1, and (4) the reaction is reversible and, upon neutralization of acid, disproportionation products 2 and 3H + comproportionate to starting 1 . In highly acidic media, the protonated form 1H + is relatively stable due to a low disproportionation rate. Based on the known and newly obtained values of equilibrium constants, both the standard redox potential for the 1H + / 3 pair (955 ± 15 mV) and the pH‐dependences have been calculated for the reduction potentials of 1 and 2 to hydroxylamine 3 that is in equilibrium with its protonated 3H + and deprotonated 3 ? forms. The data obtained provide a deeper insight into the mechanism of nitroxyl‐involving reactions in chemical and biological systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Imidazolium ionic liquids (IMILs) with a piperidine moiety appended via variable length methylene spacers (with n = 1–4) were studied computationally to assess their potential to act as internal base for N‐heterocyclic carbene (NHC) generation. Proton transfer energies computed by B3LYP/6‐311+G(2d,p) were least endothermic for the basic‐IL with n = 3, whose optimized structure showed the shortest C2‐H‐‐‐‐N(piperidine) distance. Inclusion of counter anion (Cl or NTf2) caused dramatic conformational changes to enable close contact between the acidic C2‐H and the anions. To examine the prospect for internal C2‐H‐‐‐‐N coordination, multinuclear NMR data (1H, 15N, and 13C) were computed by gauge independent atomic orbitals–density functional theory (GIAO‐DFT) in the gas phase and in several solvents by the PCM method for comparison with the experimental NMR data for the basic ILs (with n = 2–4) synthesized in the laboratory. These studies indicate that interactions with solvent and counter ion are dominant forces that could disrupt internal C2‐H‐‐‐‐N coordination/proton transfer, making carbene generation from these basic‐ILs unlikely without an added external base. Therefore, the piperidine‐appended IMILs appear suitable for application as dual solvent/base in organic/organometallic transformations that require the use of mild base, without the necessity to alkylate at C‐2 to prevent N‐heterocyclic carbene formation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The influence of lithium, sodium, potassium, rubidium, and cesium on the electronic system of the 4‐nitrobenzoic acid molecule was studied. The vibrational (FT‐IR, FT‐Raman) and NMR (1H and 13C) spectra for 4‐nitrobenzoic acid salts of alkali metals were recorded. The assignment of vibrational spectra was done. Characteristic shifts of band wavenumbers and change in band intensities along the metal series were observed. Good correlation between the wavenumbers of the vibrational bands in the IR and Raman spectra for 4‐nitrobenzoates and ionic potential, electronegativity, atomic mass, and affinity of metals were found. The chemical shifts of protons and carbons (1H, 13C NMR) in the series of studied alkali metal 4‐nitrobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by HF, B3PW91, B3LYP methods using 6‐311++G** basis set. The theoretical IR, Raman, and NMR spectra were obtained. The theoretical vibrational spectra were interpreted by means of potential energy distributions (PEDs) using VEDA 3 program. The calculated parameters were compared to experimental characteristic of studied compounds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In the present work, the dynamic 1H NMR effects were investigated at variable temperatures within a particular phosphorus ylide involving a 2‐benzoxazolinone around the carbon–carbon single bond and also partial carbon–carbon double bond in two Z‐ and E‐rotational isomers. Activation and kinetic parameters including ΔH, ΔG, ΔS and Ea were determined in accord with the dynamic 1H NMR data for three rotational processes. In addition, theoretical studies based upon rotation around the same bonds were investigated using ab initio and DFT methods at the HF/6‐31G(d,p) and B3LYP/6‐31G(d,p) levels of theory. Theoretical activation and kinetic parameters including ΔH, ΔG, ΔS and Ea were calculated at 298 K and experimental temperatures for five rotational processes. These results (experimental and theoretical), taken together, indicate that the rotational energy barrier around the C = C double bond was considerably high and the observation of the two rotational isomers was impossible (seen as a single isomer) at the high temperatures, in this case rotation around the C = C bond was too fast on the NMR time scale. When the temperature was relatively low, the rate of rotation was sufficiently slow; therefore, observation of the two Z‐ and E‐isomers was possible. In addition, calculations at the HF/6‐31G(d,p) level of theory showed very favorable results in agreement with the experimental data on rotation around the C = C bond. While, B3LYP level using the 6‐31G(d,p) basis set was provided the reasonable data for the restricted rotations around the C–C and C–N single bond. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A kinetic investigation in methanol of the title reaction has evidenced the occurrence of two processes: the 1‐ E 1‐ Z isomerization and the rearrangement of the (Z)‐isomer into the relevant 4‐benzoylamino‐2,5‐diphenyl‐1,2,3‐triazole ( 1‐ Z → T ). The latter reaction is in line with the ability of the (Z)‐phenylhydrazones of 3‐benzoyl‐1,2,4‐oxadiazoles to undergo the so called mononuclear rearrangement of heterocycles (MRH). The occurrence of both the examined reactions is dependent on a Lewis‐acid‐catalysis. The obtained results have shown the possibility of a ‘new’ type of acid‐catalysis (bifunctional catalysis by Lewis salts) in the MRH. This catalysis operates through a completely different mechanism with respect to the one recently observed, and deeply investigated, in the presence of protic acids for the (Z)‐phenylhydrazone of 5‐amino‐3‐benzoyl‐1,2,4‐oxadiazole, in both dioxane/water and toluene, for which the catalytic process was dependent on the protonation of N(4) ring‐nitrogen of the 1,2,4‐oxadiazole. As a matter of fact, the copper salts seem able to interact with the >C?N? NH? C6H5 moiety, yielding adducts which, in some cases, are prone to both isomerize and rearrange. Therefore, a similar behaviour in some manner parallel to that already observed in benzene in the presence of aliphatic amines (base‐catalysis) has been evidenced. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The ―NH2, ―NO2, ―NHNO2, ―C(NO2)3 and ―CF(NO2)2 substitution derivatives of 4,4′,5,5′‐tetranitro‐2,2′‐1H,1′H‐2,2′‐biimidazole were studied at B3LYP/aug‐cc‐pVDZ level of density functional theory. The crystal structures were obtained by molecular mechanics (MM) methods. Detonation properties were evaluated using Kamlet–Jacobs equations based on the calculated density and heat of formation. The thermal stability of the title compounds was investigated via the energy gaps (?ELUMO ? HOMO) predicted. Results show that molecules T5 (D = 10.85 km·s?1, P = 57.94 GPa) and T6 (D = 9.22 km·s?1, P = 39.21 GPa) with zero or positive oxygen balance are excellent candidates for high energy density oxidizers (HEDOs). All of them appear to be potential explosives compared with the famous ones, octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetraazocane (HMX, D = 8.96 km·s?1, P = 35.96 GPa) and hexanitrohexaazaisowurtzitane (CL‐20, D = 9.38 km·s?1, P = 42.00 GPa). In addition, bond dissociation energy calculation indicates that T5 and T6 are also the most thermally stable ones among the title compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The experimental and theoretical vibrational spectra of 2‐fluorophenylboronic acid (2fpba) were studied. The Fourier transform Raman and Fourier transform infrared spectra of the 2fpba molecule were recorded in the solid phase. The structural and spectroscopic analysis of the molecule was carried out by using Hartree‐Fock and density functional harmonic calculations. For the title molecule, only one form was found to be the most stable structure, by using B3LYP level with the 6‐31++G(d,p) basis set. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution (TED). The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the 2fpba molecule were calculated using the Gauge‐Invariant‐ atomic orbital (GIAO) method in DMSO solution using IEF‐PCM model and compared with the experimental data. Finally, geometric parameters, vibrational wavenumbers and chemical shifts were compared with available experimental data of the molecule. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Based on energetic compound [1,2,5]‐oxadiazolo‐[3,4‐d]‐pyridazine, a series of functionalized derivatives were designed and first reported. Afterwards, the relationship between their structure and performance was systematically explored by density functional theory at B3LYP/6‐311 g (d, p) level. Results show that the bond dissociation energies of the weakest bond (N–O bond) vary from 157.530 to 189.411 kJ · mol?1. The bond dissociation energies of these compounds are superior to that of HMX (N–NO2, 154.905 kJ · mol?1). In addition, H1, H2, H4, I2, I3, C1, C2, and D1 possess high density (1.818–1.997 g · cm?3) and good detonation performance (detonation velocities, 8.29–9.46 km · s?1; detonation pressures, 30.87–42.12 GPa), which may be potential explosives compared with RDX (8.81 km · s?1, 34.47 GPa ) and HMX (9.19 km · s?1, 38.45 GPa). Finally, allowing for the explosive performance and molecular stability, three compounds may be suggested as good potential candidates for high‐energy density materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The self‐association and tautomerism of (E)‐isatin‐3‐4‐phenyl(semicarbazone) Ia and (E)‐N‐methylisatin‐3‐4‐phenyl(semicarbazone) IIa were investigated in solvents of various polarity. In weakly interacting non‐polar solvents, such as CHCl3 and benzene, phenylsemicarbazone concentrations above 1×10?5 mol dm?3 result in the formation of dimers or higher aggregates of E‐isomers Ia and IIa . This aggregate formation prevents room temperature E–Z isomerization of Ia and IIa to more stable Z‐isomers. In contrast to the situation in non‐polar solvents, E–Z isomerization from the monomeric form of phenylsemicarbazone Ia and IIa E‐isomers occurs in highly interactive polar solvents including MeOH and DMF only at temperatures above 70 °C. Moreover, decrease in phenylsemicarbazone concentration below 1×10?4 mol dm?3 in these highly solute–solvent interacting systems leads to aggregate dissociation, and a new hydrazonol tautomeric form with a high degree of conjugation predominates in these solutions. Theoretical calculations confirm obtained experimental results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
We report a preparation of new 6‐substituted‐5,6‐dihydrobenzo[c]phenanthridines by the reaction of azoles with quaternary benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine. The prepared compounds have been characterized by NMR spectroscopy, mass spectrometry, and single‐crystal X‐ray diffraction. Conformational behaviors of carbazole derivatives in solution have been investigated by low‐temperature NMR experiments. Barriers to rotation around newly formed C6–N bonds were determined to be 12–13 kcal/mol. Quantum chemical calculations have been used to reproduce the experimental observations. Large structural effects on several 1H NMR resonances were observed experimentally, analyzed by Density Functional Theory (DFT) calculations at B3LYP/6‐311+G(d,p)/PCM level, and interpreted by ring‐current effects of the benzo[c]phenanthridine and carbazole units. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
4,4‐Dimethyl‐1‐(trifluoromethylsulfonyl)‐1,4‐azasilinane 1 and 2,2,6,6‐tetramethyl‐4‐(trifluoromethylsulfonyl)‐1,4,2,6‐oxazadisilinane 2 were studied by variable temperature dynamic 1H, 13C, 19F NMR spectroscopy and theoretical calculations at the DFT (density functional theory) and MP2 (Møller‐Plesset 2) levels of theory. Both kinetic (barriers to ring inversion) and thermodynamic data (frozen conformational equilibria) could be obtained for the two compounds. The computations revealed two minima on the potential energy surface for molecules 1 and 2 corresponding to the rotamers with the CF3SO2 group directed ‘inward’ and ‘outward’ the ring, the latter being 0.2–0.4 kcal/mol (for 1 ) and 1.1 kcal/mol (for 2 ) more stable than the former. The vibrational calculations at the DFT and MP2 levels of theory give the values of the free energy difference ΔGo for the ‘inward’ ‘outward’ equilibrium consistent with those determined from the experimentally measured ratio of the rotamers. The structure of crystalline compound 2 was ascertained by X‐ray diffraction analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Quantum chemical calculations of energies, geometries and vibrational wavenumbers of 2,4‐difluorophenol (2,4‐DFP) were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6‐311G(d,p) as basis set. The optimized geometrical parameters obtained by HF and DFT calculations are in good agreement with related molecules. The best level of theory in order to reproduce the experimental wavenumbers is the B3LYP method with the 6‐311G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of 2,4‐DFP is also reported. The entropy of the title compound was also performed at HF/6‐311G(d,p) and B3LYP/6‐311G(d,p) levels of theory. The isotropic chemical shift computed by 1H, 13C NMR analyses also shows good agreement with experimental observations. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule have been constructed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
When N‐benzyl‐N′‐methylacetamidinium hydrochloride (pKa=11.8) is dissolved in D2O/DCl(1 M), an equilibrium of 2 54:46 stereoisomers in an ~2:1 =(R)Nδ+H(D) D/H ratio is formed. Therefore, 2 R =N‐benzyl (E and Z) and 2 R =N‐methyl (E and Z) groups attached to the corresponding H(D) (Z and E) for a total of 8 1H‐NMR signals are observed. Consequently, their rates of H and D transfer to D2O can be measured by means of the 1H‐NMR broadness (line shape) of the =(R )Nδ+H doublets and =(R )Nδ+D broad singlets. Acidity selectivity is observed for both processes. In fact, the relative proton and deuterium transfer rates follow the acidity order: =(PhCH2)Nδ+‐H(E) > =(PhCH2)Nδ+‐H(Z) > =(Me)Nδ+‐H(E) > =(Me)Nδ+‐H(Z). Proton transfer rates are in the range of 8 to 0.5 s‐1 with α = .92. This tendency is independently supported by the observed experimental chemical shift deuterium isotopic perturbation. The rate‐limiting step for proton exchange is the breaking of the hydrogen bond due to the fast amidine reprotonation (~1011 s). =(R)Nδ+D/=(R)Nδ+H equilibration is reached at ~80 s, and it can be measured by the relative =(R) Nδ+H versus =(R) Nδ+D signal integrations. The equilibrium of the 4 =(R)Nδ+H(D) centers is shifted toward deuterium, but they are further shifted in the more basic centers. Equilibrium is completely shifted toward D in the 4 centers when OD? contributes with the exchange process at pD > 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号