首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High‐performance microcellular closed‐cell foams were prepared by a two‐stage batch foaming process from fluorinated poly(ether ether ketone) and characterized by scanning electronic microscopy, tensile, and dynamic mechanical analysis (DMA). The effects of saturation pressure and temperature on the cell size, cell density, and bulk density of porous materials had been discussed. The resulting materials had average cell diameters in the range 3–17 μm, and cell densities (Nf) in the order of 0.6 × 109–1.39 × 1010 cells/cm3. The porosity (Vf) was in the range of 0.2–0.85. In contrast, experimental values of Young's moduli were in good agreement with theoretically predicted values, but the relative strengths were somewhat lower than that predicted. The relaxation mechanism of microcellular was systematically investigated by DMA. The dynamic mechanical spectrometry showed that the storage modulus curve at high temperature region appeared a peak and the loss modulus was lower as compared to their solid counterparts. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 173–183, 2007  相似文献   

2.
微孔塑料是指泡孔尺寸为1~10μm、密度为109~1012 cell/cm3的发泡塑料,独特的结构使其具有质量轻、高冲击强度、低传导率、隔音和隔热效果好等优越性能,具有广泛的应用前景,被誉为"21世纪的新型材料".聚芳醚酮具有很高的热稳定性,优良的电性能及机械性能,广泛应用于航空、航天、电子和核能  相似文献   

3.
Binary melt‐blended mixtures of two aryl ether ketone polymers (i.e., a new poly(aryl ether ketone) (code name PK99) and poly(ether ether ketone) (PEEK), have been studied. Polymer miscibility in glassy amorphous (or melt) domains has been demonstrated for the binary blend comprising of two aryl‐ether‐ketone‐type semicrystalline polymers. Composition‐dependent, single Tg was observed within full composition range in the PK99/PEEK blends, and the narrow Tg breadth also suggests that the scale of mixing was fine and uniform. To better resolve any possible overlapping Tg's, physical aging was imposed on a comparison set of blend samples for the purpose of improving detectability of overlapped multiple transitions if existing. The result still showed one single Tg. The relative sharp Tg and lack of cloud point transition suggest that the scale of molecular intermixing is good. Phase homogeneity was further confirmed using optical and scanning electron microscopy. The X‐ray diffractograms suggest that isomorphism does not exist in the PK99/PEEK blends and that the crystal forms of the respective polymers remain distinct and unchanged by the miscibility in the amorphous region. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1485–1494, 1999  相似文献   

4.
新型PES微孔材料的制备及性能研究   总被引:1,自引:1,他引:0  
合成了新型双烯丙基聚醚砜(PES), 采用超临界CO2作为物理发泡试剂制备微孔材料, 研究了不同发泡温度、饱和压力、发泡时间和放气时间等因素对微孔形貌的影响. 结果表明, 发泡温度在110~170 ℃之间, 随着温度的升高, 泡孔直径增加, 泡孔密度在140 ℃达到一个最大值; 随着饱和压力的升高, 泡孔直径减小, 泡孔密度增大; 发泡时间和放气时间对微孔直径和密度影响不大; 研究了在不同辐照剂量下微孔材料的交联性能, 结果表明, 在600 kGy辐照剂量以下, 交联效果不明显, 在800 kGy以上, 随着辐照剂量的增大, 凝胶含量增加, 辐照后的样品在265 ℃热处理10 min, 仍能保持完好的微孔结构.  相似文献   

5.
The preparation of microcellular polystyrene (PS), lightly sulfonated polystyrene (SPS), zinc‐neutralized lightly sulfonated polystyrene (ZnSPS), and blends of PS/SPS and PS/ZnSPS via supercritical CO2 was carried out with the pressure‐quench process. Both higher foaming temperature and lower pressure result in larger cell sizes, lower cell densities, and lower relative density for microcellular ionomers and blends as for microcellular PS. The difference among various microcellular samples is the change of cell size with the sample composition. The cell size decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. The diffusivity of CO2 in samples also decreases in the sequence from SPS, through PS/SPS blends, PS and PS/ZnSPS blends, to ZnSPS. For this series of samples with similar structure and identical solubility of CO2, the varying diffusivity is responsible for the difference of cell sizes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 368–377, 2003  相似文献   

6.
Poly(arylene ether ketone)s (PAEKs) are the most commonly known high‐performance materials used for ion exchange and fuel cell membranes. Described here is the design of novel sulfonated PAEKs (SPAEKs) and nonsulfonated PAEKs containing crown ether units in the main chain, which can be used in sensing applications and ion‐selective membranes. To this end, 4,4′(5′)‐di(hydroxybenzo)‐18‐crown‐6 was synthesized and used as monomer in a step growth polymerization to form crown ether‐containing PAEKs and SPAEKs. The successful synthesis of PAEKs containing 18‐crown‐6 and sulfonate groups was confirmed by gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Membranes are fabricated from the sulfonated polymers. Potassium ion transport properties of the SPAEK and crown ether‐containing SPAEK membranes are assessed by diffusion dialysis. Potassium ion diffusion in the crown ether‐containing SPAEK membranes is almost four times lower than K+ diffusion in the native polymer membranes, without crown ether. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2786–2793  相似文献   

7.
The polyaddition of fluorine‐containing bis(epoxide)s and fluorine‐containing triazine di(aryl ether)s were examined to give the corresponding fluorine‐containing poly(cyanurate)s. It was observed that the synthesized fluoropolymers had good thermal stabilities and good film‐forming properties. The glass transition temperatures (Tg's) and refractive‐indices (nD's) of synthesized polymers were determined by differential scanning calorimetry and ellipsometry, respectively, and it was found that the values of Tg's and nD's were supported by their fluorine containing ratios and skeletons. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4421–4429, 2007  相似文献   

8.
Hydroxyl‐terminated poly(ether ether ketone) with pendent tert‐butyl groups (PEEKTOH) was synthesized by the nucleophilic substitution reaction of 4,4′‐difluorobenzophenone with tert‐butyl hydroquinone with potassium carbonate as a catalyst and N‐methyl‐2‐pyrrolidone as a solvent. Diglycidyl ether of bisphenol A epoxy resin was toughened with PEEKTOHs having different molecular weights. The melt‐mixed binary blends were homogeneous and showed a single composition‐dependent glass‐transition temperature (Tg). Kelley–Bueche and Gordon–Taylor equations gave good correlation with the experimental Tg. Scanning electron microscopy studies of the cured blends revealed a two‐phase morphology. A sea‐island morphology in which the thermoplastic was dispersed in a continuous matrix of epoxy resin was observed. Phase separation occurred by a nucleation and growth mechanism. The dynamic mechanical spectrum of the blends gave two peaks corresponding to epoxy‐rich and thermoplastic‐rich phases. The Tg of the epoxy‐rich phase was lower than that of the unmodified epoxy resin, indicating the presence of dissolved PEEKTOH in the epoxy matrix. There was an increase in the tensile strength with the addition of PEEKTOH. The fracture toughness increased by 135% with the addition of high‐molecular‐weight PEEKTOH. The improvement in the fracture toughness was dependent on the molecular weight and concentration of the oligomers present in the blend. Fracture mechanisms such as crack path deflection, ductile tearing of the thermoplastic, and local plastic deformation of the matrix occurred in the blends. The thermal stability of the blends was not affected by blending with PEEKTOH. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 541–556, 2006  相似文献   

9.
Hyperbranched poly(ether sulfone) was prepared in the presence of an oligomeric linear poly(ether sulfone) to generate multiblock hyperbranched‐linear (LxHB) copolymers. The LxHB copolymers were prepared in a two‐step, one‐pot synthesis by first polymerizing AB monomer to generate a linear block of a desired molecular weight followed by addition of the AB2 monomer in a large excess (19:1, AB2:AB) to generate the hyperbranched block. NMR integration analysis indicates that AB2:AB ratio is independent of the reaction time. Because the molecular weight still increases with reaction time, these results suggest that polymer growth continues after consumption of monomer by condensation into a multiblock architecture. The LxHB poly(ether sulfone)s have better thermal stability (10% mass loss > 343 vs. 317 °C) and lower Tg (200 vs. > 250 °C) than the hyperbranched homopolymer, higher Tg than the linear homopolymer (<154 °C), while little difference in the solubility character was observed between the two polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4785–4793, 2008  相似文献   

10.
The synthesis of a new A2X‐type difluoride monomer, N‐2‐pyridyl‐4′,4″‐bis‐(4‐fluorobenzenesulfonyl)‐o‐terphenyl‐3,6‐dimethyl‐4,5‐dicarboxylic imide ( 3 ), is described. The monomer 3 was incorporated into a series of copoly(aryl ether sulfone)s by polymerization of 4,4′‐isopropylidenediphenol and 4,4′‐difluorophenylsulfone. The incorporation of monomer 3 had an observable effect on both the glass‐transition temperature of poly(aryl ether sulfone)s and the tendency for macrocyclic oligomers to form during polymerization. Replacement of the pyridyl imide group via a transimidization reaction with propargyl amine proceeded quantitatively and without polymer degradation. The acetylene containing copoly(aryl ether sulfone) could be crosslinked by simple thermal treatment, resulting in an increase in the glass‐transition temperature and solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 9–17, 2000  相似文献   

11.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007  相似文献   

12.
High molecular weight bisphenol A or hydroquinone‐based poly(arylene ether phosphine oxide/sulfone) homopolymer or statistical copolymers were synthesized and characterized by thermal analysis, gel permeation chromatography, and intrinsic viscosity. Miscibility studies of blends of these copolymers with a (bisphenol A)‐epichlorohydrin based poly(hydroxy ether), termed phenoxy resin, were conducted by infrared spectroscopy, dynamic mechanical analysis, and differential scanning calorimetry. All of the data are consistent with strong hydrogen bonding between the phosphonyl groups of the copolymers and the pendent hydroxyl groups of the phenoxy resin as the miscibility‐inducing mechanism. Complete miscibility at all blend compositions was achieved with as little as 20 mol % of phosphine oxide units in the bisphenol A poly(arylene ether phosphine oxide/sulfone) copolymer. Single glass transition temperatures (Tg) from about 100 to 200°C were achieved. Replacement of bisphenol A by hydroquinone in the copolymer synthesis did not significantly affect blend miscibilities. Examination of the data within the framework of four existing blend Tg composition equations revealed Tg elevation attributable to phosphonyl/hydroxyl hydrogen bonding interactions. Because of the structural similarities of phenoxy, epoxy, and vinylester resins, the new poly(arylene ether phosphine oxide/sulfone) copolymers should find many applications as impact‐improving and interphase materials in thermoplastics and thermoset composite blend compositions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1849–1862, 1999  相似文献   

13.
Two series of renewable nipagin and eugenol‐based copoly(ether ester)s, PDN11?xE1x and PDN11?xE2x (x = 0%, 10%, 20%, 30%, 40%, 50%), were prepared in the melt with 1,10‐decanediol as a comonomer. The synthesized poly(ether ester)s have weight‐average molecular weights (Mw) in the range of 20,400–37,200 g mol?1, and dispersity (D) values between 1.7 and 1.9. Thermal gravimetric analysis (TGA) reveal that all the poly(ether ester)s exhibit a two‐step degradation mechanism with an initial degradation temperature above 350 °C. Results from differential scanning calorimetric (DSC) and wide‐angle X‐ray diffraction (WXRD) analyses demonstrate that the poly(ether ester)s are all semicrystalline materials with glass transition temperature (Tg) values ranging between ?21.3 and ?8.3 °C. The insertions of phenoxy‐ether linkage and eugenol‐derived composition have significant influence on the Tg, crystallinity, Young's modulus, and tensile strength, as well as the toughening effect and degradability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2171–2183  相似文献   

14.
The synthesis of a new diamine monomer, Nn‐butyl 3,12‐diamino‐5,6,9,10‐tetrahydro[5]helicene‐7,8‐dicarboxylic imide (4), that contains a helically locked, U‐shaped 4′,4″‐o‐terphenyl moiety is described. The monomer was polymerized with 3,3′,4,4′‐oxydiphthalic dianhydride and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane to form a series of copoly(ether imide)s (5a–e). The incorporation of 4 into the poly(ether imide)s varied the glass‐transition temperature of the copolymers of which it was a part. There was a tendency to form macrocyclic materials at higher molar percentages of 4 during polymerization. The fluorescence of all the copoly(ether imide)s gradually decreased as the content derived from monomer 4 increased in the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 758–763, 2000  相似文献   

15.
The effect of shear on the crystallization behavior of the poly(ether ether ketone) (PEEK) has been investigated by means of ex situ wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering, and differential scanning calorimetry (DSC). The changes of the intensity of WAXD patterns along shear direction of the PEEK induced by short‐term shear were observed when the samples crystallized at 330 °C. The results showed that the dimensions of the crystallites perpendicular to the (110) and (111) planes reduced with the increase of shear rate, whereas the dimensions of the crystallites perpendicular to (200) plane increased with the increase of shear rate. Moreover, increasing shear rate can lead to the increase of the crystallinity as well as the average thickness of the crystalline layers. Correspondingly, a new melting peak at higher temperature was found during the subsequent DSC scanning when the shear rate was increased to 30 s?1. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 220–225, 2010  相似文献   

16.
tert‐Butyl‐substituted poly(ether ether ketone) (tBuPEEK), which does not undergo crystallization with thermal annealing, crystallizes readily when treated with compressed CO2. The dissolved CO2 causes a reduction in the glass‐transition temperature of the polymer–gas system and enhances the chain mobility of the macromolecules, thereby bringing about crystallization. In the presence of CO2, crystallization is increasingly favored with increasing CO2 pressure and treatment temperature. The melting point of tBuPEEK crystals increases linearly with the CO2 pressure applied in the treatment, indicating an increase in the order and/or size of the crystals. The extent of crystallinity increases when small amounts of methanol or dichloromethane are used as a cosolute with CO2. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1505–1512, 2001  相似文献   

17.
Dynamic rheological measurements were carried out on blends of poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) in the melt state in the oscillatory shear mode. The data were analyzed for the fundamental rheological behavior to yield insight into the microstructure of PEEK/PES blends. A variation of complex viscosity with composition exhibited positive–negative deviations from the log‐additivity rule and was typical for a continuous‐discrete type of morphology with weak interaction among droplets. The point of transition showed that phase inversion takes place at composition with a 0.6 weight fraction of PEEK, which agreed with the actual morphology of these blends observed by scanning electron microscopy. Activation energy for flow, for blend compositions followed additive behavior, which indicated that PEEK/PES blends may have had some compatibility in the melt. Variation of the elastic modulus (G′) with composition showed a trend similar to that observed for complex viscosity. A three‐zone model used for understanding the dynamic moduli behavior of polymers demonstrated that PEEK follows plateau‐zone behavior, whereas PES exhibits only terminal‐zone behavior in the frequency range studied. The blends of these two polymers showed an intermediate behavior, and the crossover frequency shifted to the low‐frequency region as the PEEK content in PES increased. This revealed the shift of terminal‐zone behavior to low frequency with an increased PEEK percentage in the blend. Variation of relaxation time with composition suggested that slow relaxation of PEEK retards the relaxation process of PES as the PEEK concentration in the blend is increased because of the partial miscibility of the blend, which affects the constraint release process of pure components in the blend. A temperature‐independent correlation observed in the log–log plots of G′ versus loss modulus (G″) for different blend systems fulfilled the necessary condition for their rheological simplicity. Further, the composition‐dependent correlations of PEEK/PES blends observed in a log–log plot of G′ versus G″ showed that the blends are either partially miscible or immiscible and form a discrete‐continuous phase morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1548–1563, 2004  相似文献   

18.
A novel bis(ether anhydride) monomer, 3,6‐bis(3,4‐dicarboxyphenoxy)benzonorbornane dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile with 3,6‐dihydroxybenzonorbornane in the presence of potassium carbonate, followed by the alkaline hydrolysis of the intermediate bis(ether dinitrile) and the cyclodehydration of the resulting bis(ether diacid). A series of poly(ether imide)s bearing pendant norbornane groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were 0.81–1.81 dL/g. The poly(ether imide) with m‐phenylenediamine as a diamine showed good organosolubility. Most of the cast poly(ether imide) films have had high tensile strengths and moduli. The glass‐transition temperatures of these poly(ether imide)s, except for those from rigid p‐phenylenediamine and benzidine, were recorded between 211 and 246 °C by differential scanning calorimetry. The softening temperatures of all the poly(ether imide) films stayed within 210–330 °C according to thermomechanical analysis. No polymers showed significant decomposition before 500 °C in a nitrogen or air atmosphere. A comparative study of the properties with the corresponding poly(ether imide)s without pendant substituents was also made. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1712–1725, 2002  相似文献   

19.
The relationship between semicrystalline morphology and glass transition temperature has been investigated for solvent-crystallized poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK). Solvent-crystallized specimens of both PEEK and PEKK displayed a sizeable positive offset in Tg compared to quenched amorphous specimens as well as thermally crystallized specimens of comparable bulk crystallinity; the offset in Tg for the crystallized samples reflected the degree of constraint imposed on the amorphous segments by the crystallites. Small-angle X-ray scattering studies revealed markedly smaller crystal long periods (d) for the solvent-crystallized specimens compared to samples prepared by direct cold crystallization. The strong inverse correlation observed between Tg and interlamellar amorphous thickness (lA) based on a simple two-phase model was in excellent agreement with data reported previously for PEEK, and indicated the existence of a unique relationship between glass transition temperature and morphology in these poly(aryl ether ketones) over a wider range of sample preparation history and lamellar structure than was previously reported. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 65–73, 1998  相似文献   

20.
Various phase behavior of blends of poly(vinyl ether)s with polyesters of two types (highly crystalline and less crystalline with different main‐chains) were examined using differential scanning calorimetry (DSC) and optical microscopy (OM). Effects of varying the main‐chain polarity of the constituent polyesters on the phase behavior of the blends were analyzed. Miscibility in PVME/polyester blends was found only in polyesters with backbone CH2/CO ratio = 3.5 to 7.0). Tg‐composition relationships for blends of PVME with highly crystalline polyesters (PBA, PHS) were found to differ significantly from those for PVME blends with less‐crystalline polyesters (PTA, PEAz). Crystallinity of highly crystalline polyester constituents in blends caused significant asymmetry in the Tg‐composition relationships, and induced positive deviation of blends' Tg above linearity; on the other hand, blends of PVME with less crystalline polyesters exhibit typical Fox or Gordon‐Taylor types of relationships. The χ parameters for the miscible blends were found to range from ?0.17 to ?0.33, reflecting generally weak interactions. Phase behavior was analyzed and compared among blends of PVME with rapidly crystallizing vs. less‐crystallizing polyesters, respectively. Effects of polyesters' crystallinity and structures on phase behavior of PVME/polyester blends are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2899–2911, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号