首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
陈畅  宋超 《化学教育》2023,44(6):76-83
有氧和无氧分解是生物体代谢有机物的2种途径,前者一直是生物化学课程中物质代谢的教学核心和重点。厌氧消化是有机物经无氧分解生成甲烷和二氧化碳的途径,相比于有氧分解,其具有化学反应众多、中间产物多、途径复杂等特点,同时对维护自然生态平衡、物质循环和人类社会的绿色健康发展等具有重要作用。如此重要的途径长期以来一直没有在生物化学教材与教学内容中体现,亟需进行教学改革。利用布鲁姆教学目标分类理论将厌氧消化过程中的主要反应、氧化还原过程及电子传递、热力学变化及串联反应等知识进行系统介绍,对物质代谢的另一条无氧路径进行补充,丰富了学生代谢网络的知识框架,完善了生物化学教学体系,相关教学内容和经验可供同行参考借鉴,对相关课程教学改革具有重要价值。  相似文献   

2.
由于氨基酸代谢的多样性和相对独立性,在基础教学中对相关内容的讨论和推广对培养21世纪新型跨学科人才是极其重要的。本文将以三种基本的非极性天然氨基酸——缬氨酸、异亮氨酸和亮氨酸为例,从氨基酸合成代谢的内容和方式等方面做教学模式的探索,并尝试归纳与总结自然界采取这样代谢路径的原因和逻辑。同时,其中相关的生物化学过程也体现出生命体系所采取的不同寻常的合成路径和反应机制。这对于本科生而言不仅是具有趣味性与启发性的良好的素材,也是了解目前研究热点和积累知识的有效渠道,期望对其后续深入的学习和研究有帮助。  相似文献   

3.
从氨基酸代谢的基本内容出发,分析并整理了其在生物化学教学中的意义与教学要点,其中富有的各种生物化学过程也充满了趣味性,对于本科生教学是良好的素材。在举例阐述其多样性、复杂性、趣味性与启发性的基础上,讨论生物化学教学中氨基酸代谢相关内容,是一种将前沿科学融入基础生物化学教育的新探索。  相似文献   

4.
选取第五周期元素碘,结合多学科的研究方法论对含碘氨基酸类激素在生物体内的合成和分解代谢进行系统性分析。通过解析碘元素本身性质及其各个氧化态之间的转化,探讨碘元素在生物体内的作用机制,揭示自然界对物质代谢的精细调控。这一教学模式探索性地融入无机化学、元素有机化学、分子生物学、生物化学、生物物理学、化学生物学等一系列学科内容,旨在让学生在领悟生命科学内在规律,从而激发其科研及学习热情,并训练学生的类比思维和思辨能力。期对培养21世纪跨学科综合型人才的培养有所助益。  相似文献   

5.
丙酮酸脱氢酶系是生物体内重要的氧化还原酶之一,其催化丙酮酸氧化脱羧转化为乙酰辅酶A是生物体内的关键代谢过程,在生物化学研究中具有重要的意义.根据生物化学的理由来进行新药分子生物合理设计的观点,丙酮酸脱氢酶系是一个具有重要意义和值得探索的靶标.研究表明许多有机磷化合物是一类重要的丙酮酸脱氢酶系抑制剂.本文系统介绍了含磷丙酮酸脱氢酶系抑制剂的研究历程和研究动态,并结合本课题组的研究工作对代表性的研究结果和进展进行了总结和评述.  相似文献   

6.
陈畅  袁淑兰  李成 《化学教育》2023,(22):95-101
厌氧消化是自然界有机物质分解代谢的重要途径,对实现环境和经济的可持续发展具有重要意义。消化中产甲烷过程涉及众多生化反应,其规律很难准确描述。教师在生物化学课程中引入厌氧消化产甲烷动力学教学,设计了5个紧密衔接的教学模块,介绍了3种常见产甲烷动力学模型的推导过程、适用范围、参数特点,教授学生利用软件完成数据拟合的方法,并训练其对拟合结果进行分析。本教学改革通过将产甲烷动力学引入课堂,使学生在更好地理解复杂的厌氧消化反应过程基础知识的同时,构建了理论与实践应用间的桥梁,不仅掌握了精准定量描述厌氧消化过程中产甲烷规律的模型,还学到利用比较动力学参数来评价不同原料发酵规律差异的方法,为未来其参与实际生产和工程实践奠定了基础,获得了良好的教学效果。本文介绍了教学改革的具体内容,对完善生物化学的教学框架和改善教学质量具有重要意义,同时为环境工程、化学工程、新能源工程、生物工程等相关专业课程及实验教学的改革和探索提供了有益参考。  相似文献   

7.
杜秀红  崔节虎 《化学教育》2017,38(18):55-59
生物化学中物质代谢与调节部分是整个教材中内容最多、最为重要的一部分,但是也是本门课程中最为晦涩难懂的部分,尤其对于化学知识薄弱、整体学习能力和理解能力相对较差的高职高专学生来说,更具有一定的挑战性。根据多年教学经验总结,针对此部分内容的特点及内在规律,充分体现“授人以鱼不如授人以渔”的教学理念,就多备外文原版教材、利用方程式记忆概念、巧用阿拉伯数字学习反应过程等6种教学方法进行探讨。  相似文献   

8.
作为一种水溶性多糖高分子材料,羧甲基壳聚糖(carboxymethyl chitosan, CMCTs)具有优异的生物相容性和生物降解性以及保湿、止血、抗菌、可吸收等一系列优良的功能特性,因而被广泛应用于医工交叉领域。羧甲基壳聚糖进入体内后,在酶、氧、微生物、水等环境适宜时能够被降解,并经吸收、代谢、排泄。其体内降解速率主要取决于材料的尺寸、脱乙酰度、取代度、分子量等。了解羧甲基壳聚糖在动物体内的降解代谢行为,对羧甲基壳聚糖在转化过程中的质量控制和临床应用至关重要。然而就目前而言,羧甲基壳聚糖在生物体内降解代谢的影响因素及其体内吸收、分布、代谢、排泄规律缺乏系统性总结,这一现状从基础层面严重制约了其在生物医药领域的进一步发展。基于上述问题,本文对近年来羧甲基壳聚糖基生物医用材料的降解、代谢相关研究进行梳理和总结,重点阐述了羧甲基壳聚糖作为可降解材料的生物学特性、降解方式、代谢过程等,系统揭示羧甲基壳聚糖体内降解、代谢的规律,并对植入物尺寸、脱乙酰度、取代度、分子量、交联度及成分比例等影响羧甲基壳聚糖降解速率的主要因素进行归纳,以期为羧甲基壳聚糖基生物医用材料的研发和转化研究提供参考。  相似文献   

9.
系统性地论述了从生物化学课程的发展历史、我国在生物化学方面的创新贡献、生物化学代谢反应过程、生物化学知识联系日常生活、生物学家故事和生物化学相关社会热点事件等6个模块发掘生物化学课程思政的融合点,培养学生的科学精神、创新意识、人文精神、诚信友善的职业道德及文化自信精神,并取得了较好的效果。这些策略对其他同行的生物化学课程思政建设,也能起到一定的借鉴作用。  相似文献   

10.
生命相关过程伴随着极其复杂的化学和物理过程,包含着物质变化和能量转换,其中部分能量不可避免地会以热的形式表现出来。用微量热技术和热动力学方法,研究复杂生命体系和相关反应的热动力学过程,可宏观地、本质地反映生命相关过程的内在规律。本文综述了生物量热学方法和技术在生命科学中的应用,介绍了生物量热技术在生态系统、生物组织和器官、细胞水平、亚细胞水平和分子层面等不同生物层次和结构水平上的研究现状和进展。  相似文献   

11.
The chemical reactions involved in the modifications of amino acids in processed food proteins are described. They concern the Maillard reaction, reaction with polyphenols and tannins, formation of lysinoalanine during alkaline and heat treatments, formation of isopeptides, oxidation reaction of the sulfur amino acids, and isomerization of the L-amino acids into their D-form. Information on the digestion, absorption, and urinary excretion of the reaction products obtained by using conventional nutritional tests is given. The studies that have been made on the metabolism of these molecules by using a radioisotopic approach to follow their kinetics in the organism after ingestion are also reviewed. This approach provides unique data on the quantitation of the metabolic pathways and on the kinetics of the metabolic processes involved.  相似文献   

12.
13.
Nigella sativa (N. sativa) seed has been used as an important nutritional flavoring agent and in traditional medicine for treating many illnesses since ancient times. Understanding the proteomic component of the seed may lead to enhance the understanding of its structural and biological functional complexity. In this study, we have analyzed its proteome profile based on gel-based proteome mapping technique that includes one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy. We have not come across any such studies that have been performed in N. sativa seeds up to date. A total of 277 proteins were identified, and their functional, metabolic, and location-wise annotations were carried out using the UniProt database. The majority of proteins identified in the proteome dataset based on their function were those involved in enzyme catalytic activity, nucleotide binding, and protein binding while the major cellular processes included regulation of biological process followed by regulation of secondary biological process, cell organization and biogenesis, protein metabolism, and transport. The identified proteome was localized mainly to the nucleus then to the cytoplasm, plasma membrane, mitochondria, plastid, and others. A majority of the proteins were involved in biochemical pathways involving carbohydrate metabolism, amino acid and shikimate pathway, lipid metabolism, nucleotide, cell organization and biogenesis, transport, and defense processes. The identified proteins in the dataset help to improve our understanding of the pathways involved in N. sativa seed metabolism and its biochemical features and detail out useful information that may help to utilize these proteins. This study could thus pave a way for future further high-throughput studies using a more targeted proteomic approach.  相似文献   

14.
Information regarding the metabolism of xenobiotic chemicals plays a central role in regulatory risk assessments. In regulatory programmes where metabolism studies are required, the studies of metabolic pathways are often incomplete and the identification of activated metabolites and important degradation products are limited by analytical methods. Because so many more new chemicals are being produced than can be assessed for potential hazards, setting assessment priorities among the thousands of untested chemicals requires methods for predictive hazard identification which can be derived directly from chemical structure and their likely metabolites. In a series of papers we are sharing our experience in the computerized management of metabolic data and the development of simulators of metabolism for predicting the environmental fate and (eco)toxicity of chemicals. The first paper of the series presents a knowledge-based formalism for the computer simulation of non-intermediary metabolism for untested chemicals, with an emphasis on qualitative and quantitative aspects of modelling metabolism.  相似文献   

15.
Life is made of the intimate interaction of metabolism and genetics, both built around the chemistry of the most common elements of the Universe (hydrogen, oxygen, nitrogen, and carbon). The transmissible interaction of metabolic and genetic cycles results in the hypercycles of organization and de-organization of chemical information, of living and non-living. The origin-of-life quest has long been split into several attitudes exemplified by the aphorisms "genetics-first" or "metabolism-first". Recently, the opposition between these approaches has been solved by more unitary theoretical and experimental frames taking into account energetic, evolutionary, proto-metabolic and environmental aspects. Nevertheless, a unitary and simple chemical frame is still needed that could afford both the precursors of the synthetic pathways eventually leading to RNA and to the key components of the central metabolic cycles, possibly connected with the synthesis of fatty acids. In order to approach the problem of the origin of life it is therefore reasonable to start from the assumption that both metabolism and genetics had a common origin, shared a common chemical frame, and were embedded under physical-chemical conditions favourable for the onset of both. The singleness of such a prebiotically productive chemical process would partake of Darwinian advantages over more complex fragmentary chemical systems. The prebiotic chemistry of formamide affords in a single and simple physical-chemical frame nucleic bases, acyclonucleosides, nucleotides, biogenic carboxylic acids, sugars, amino sugars, amino acids and condensing agents. Thus, we suggest the possibility that formamide could have jointly provided the main components for the onset of both (pre)genetic and (pre)metabolic processes. As a note of caution, we discuss the fact that these observations only indicate possible solutions at the level of organic substrates, not at the systemic chemical level.  相似文献   

16.
This article provides an overview of biopolymers, classed according to their chemical structures, function and occurrence, the principles of biosynthesis and metabolism in organisms. It will then focus on polyhydroxyalkanoates (PHA) for which technical applications in several areas are currently considered. PHAs represent a complex class of bacterial polyesters consisting of various hydroxyalkanoic acids that are synthesized by bacteria as storage compounds for energy and carbon if a carbon source is present in excess. Poly(3‐hydroxybutyrate), poly(3HB), is just one example. Most other PHAs are only synthesized if pathways exist which mediate between central intermediates of the metabolism or special precursor substrates on one side and coenzyme A thioesters of hydroxyalkanoic acids, which are the substrates of the PHA synthase catalyzing the polymerization, on the other side. During the last decade, basic and applied research have revealed much knowledge about the biochemical and molecular basis of the enzymatic processes for the synthesis of PHAs in microorganisms. The combination of detailed physiological studies, utilization of the overwhelming information provided by the numerous genome sequencing projects, application of recombinant DNA technology, engineering of metabolic pathways or enzymes and molecular breeding techniques applied to plants have provided new perspectives to produce these technically interesting biopolymers by novel or significantly improved biotechnological processes or by agriculture. Some examples for successful in vivo and in vitro engineering of pathways suitable for the synthesis and biotechnological production of PHAs consisting of medium‐chain‐length 3‐hydroxyalkanoic acids and short‐chain‐length hydroxyalkanoic acids will be provided.  相似文献   

17.
An ultra‐high‐performance liquid chromatography mass spectrometry method was established to detect and identify the chemical constituents of Zi Shen Formula (ZSF) and its metabolites in serum, urine and feces, after oral administration to rats. A total of 68 compounds were characterized in ZSF extracts. In vivo, 38 prototype components and 32 metabolites of ZSF were tentatively identified in rat serum, urine and feces. Seven metabolic pathways including demethylation, hydroxylation, oxidation, sulfation, glucuronidation, methylation and de‐caffeoyl were proposed to be involved in the generation of these metabolites. It was found that glucuronidation, methylation and demethylation were the major metabolic processes of alkaloids, while demethylation, methylation, sulfation and de‐caffeoyl were the major metabolic pathways of phenylethanoid glycosides. The main metabolic pathways of steroidal saponins were oxidation and isotype reactions. These findings are significant for our understanding of the metabolism of ZSF. The proposed metabolic pathways of bioactive components might be crucial for further studies of the mechanisms of action and pharmacokinetic evaluations of ZSF.  相似文献   

18.
Compared with chemical drugs, it is a huge challenge to identify active ingredients of multicomponent traditional Chinese medicine (TCM). For most TCMs, metabolism investigation of absorbed constituents is a feasible way to clarify the active material basis. Although Andrographis paniculata (AP) has been extensively researched by domestic and foreign scholars, its metabolism has seldom been fully addressed to date. In this paper, high‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry was applied to analysis and characterization of AP metabolism in rat urine and feces samples after oral administration of ethanol extract. The differences in metabolites and metabolic pathways between the two biological samples were further compared. The chemical structures of 20 components were tentatively identified from drug‐treated biological samples, including six prototype components and 14 metabolites, which underwent such main metabolic pathways as hydrolyzation, hydrogenation, dehydroxylation, deoxygenation, methylation, glucuronidation, sulfonation and sulfation. Two co‐existing components were found in urine and feces samples, suggesting that some ingredients' metabolic processes were not unique. This study provides a comprehensive report on the metabolism of AP in rats, which will be helpful for understanding its mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号