首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently recorded 17O NMR spectra of compounds studied in a previous work (Taskinen E. Acta Chem. Scand. 1985; B39 : 489–494) dealing with the thermodynamics of isomerization of the enol ethers of α‐acetyl‐γ‐butyrolactone reveal an error in compound identification, caused by an unexpected isomerization reaction during the synthetic procedure. Thus, acid‐catalyzed treatment of the lactone with HC(OR)3 in the respective alcohol ROH is shown to lead initially to the desired enol ethers which, however, are gradually isomerized to a mixture of the enol ethers and an ester of 2‐methyl‐4,5‐dihydrofuran‐3‐carboxylic acid. As a result, only one of the two isomeric compounds detected in the previous equilibration study was the expected enol ether (the thermodynamically more stable E isomer) of α‐acetyl‐γ‐butyrolactone, while the other, dominating species was the respective carboxylic ester. In the present work, the evidence provided by the 17O NMR spectra is presented, and the relative stabilities of the isomeric compounds are discussed on the basis of computational enthalpy data. The treatment is also extended to the respective isomeric compounds derived from α‐acetyl‐δ‐valerolactone. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Reaction of 3‐methyl‐2(1H)‐quinoxalinone ( 4) and 2(1H)‐quinoxalinone ( 5) with 5,6‐anhydro‐1,2‐O‐isopropylidene‐ α‐D ‐glucofuranose 6 gives the unexpected O‐glucoquinoxalines derivatives by the intermediary novel intramolecular rearrangement of 5,6‐anhydro‐1,2‐O‐isopropylidene‐α‐D ‐glucofuranose to the corresponding 3,6‐anhydro form. The obtained O‐glucoquinoxalines 7,8 were identified by NMR spectroscopy. The X‐ray crystal structures have been determined at room temperature. Moreover, a solid–solid phase transition has been detected at 198.9 K for O‐glucoquinoxalines 7 and the structure of the low‐temperature phase has been solved at 188 K. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
α‐diamines, such as ethylendiamine and o‐phenylendiamine, add to 3,4‐aryl‐disubstituted 1,2,5‐thiadiazole 1,1‐dioxides to give dihydropyrazines or quinoxalines, respectively and sulfamide. The new compound acenaphtho [5,6‐b]‐2,3‐dihydropyrazine was synthesized and characterized. The addition of ethylendiamine to 3,4‐diphenyl‐ 1,2,5‐thiadiazoline 1,1‐dioxide gives 3,4‐disubstituted thiadiazolidine 1,1‐dioxide, dihydropyrazines, or pyrazines, depending on the reaction condition used. The reactions were followed by cyclic voltammetry and NMR spectroscopy which, in some cases, allowed the detection of the thiadiazolidine intermediate. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The high orders of Stark effects on spectral line shapes are examined in the ion‐static and electron‐impact ap‐proximations. At first the distribution functions of the spatial derivative of the ion microfield in He+ plasma are calculated for different plasma conditions when the coupling parameter is weak. We present new results about the spatial derivative ion microfield distributions and apply them to show the asymmetry of the Lyman‐α (Ly‐α) line in He+ plasma. At the second stage we show that asymmetry is affected by the spatial derivative tensor of the local ion electric field. We have used the Monte‐Carlo simulation (MCS) to compute the distribution functions for all tensor components and use them to solve the evolution equation of emitter whose solution serves to compute and therefore to show the line shape asymmetry. Good agreement of our distribution functions of ion microfield gradients and the line asymmetry with other results are obtained (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Thirty‐four novel α/β‐tetrapeptides ( 1–34 ) have been prepared employing solid‐phase and in‐parallel synthetic protocols. α/β ‐Tetrapeptides 1 – 34 were prepared by a combination of three α‐amino acid residues (alanine (Ala), phenylalanine (Phe), and isoleucine (Ile)) with one β‐amino acid residue (β3‐homophenylglycine). The corresponding complexes of several selected α/β‐tetrapeptides with alkali, alkaline earth, and transition metals, [tP + M+], were evaluated using ion electrospray‐ionization mass spectrometry (ESI‐MS). According to the results from analysis of mixtures, we can conclude that the position of the β‐amino acid is determinant in the affinity toward different metal cations. Computational modeling (DFT, B3LYP 6‐311++G) provided useful information regarding the most likely coordination sites of the metal ions on the receptor α/β‐tetrapeptide 12 , HO2C‐α‐Phe‐α‐Phe‐α‐Ile‐β3‐hPhg‐NH2, as well as the conformational changes induced by the metal upon [tP + M+] complex formation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In connection with study of chiral derivatizing agents (CDAs) for NMR determination of absolute configuration of organic compounds, factors controlling the conformational preference between syn‐ and anti‐forms in α‐substituted α‐fluorophenylacetic acid methyl ester (FC(X)(Ph)COOMe) model systems were theoretically investigated. Substituents X at the stereogenic carbon atom were X = H, C?CH and CH3, the electronic and steric properties of which were significantly different from each other. The model system with X = C?CH and that with X = CH3 were found to be possible candidates for fluorine‐containing CDAs. The syn conformation is stable compared with the anti one by 0.7 kcal mol?1 for the ester with X = C?CH. On the other hand, the anti conformation is stable compared with the syn one by 0.5 kcal mol?1 for the ester with X = CH3. Both natural bond orbital (NBO) analysis and deletion of selected orbitals based on the donor–acceptor NBO scheme were adopted for semi‐quantitative estimation of factors responsible for the conformational preference as well as a qualitative inspection of occupied canonical molecular orbitals (MOs). It was shown that [σ–(σ* + π*)(C?O)] and [σσ*(Ph) and π(Ph)–σ*] hyperconjugations are the main factors controlling the conformational preferences between the syn and anti conformations. Other types of effects such as electrostatic effects were also investigated. The role of the fluorine atom was also clarified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Modification of peptides to produce peptidomimetics is of great interest, with the aim of designing potent, selective, and metabolically stable analogs having certain conformational properties. Organoboranes have been reported in the literature with a wide range of therapeutic applications. One of the therapeutically important class of molecules is amine‐carboxyboranes derived from amino acids by replacement of the Cα atom of an amino acid/peptide by boron. The conformational preferences of these peptides, with respect to backbone ω, ?, and ψ torsion angles, have been investigated by theoretical calculations. The amide bond in these molecules has the same geometry in the ground and transition states as the natural peptides. However, the boron isosteres of glycine and alanine peptides are less structured than their natural derivatives, but are distinguished by structures with a positive value for the ? angle, which is normally disfavored for natural peptides. This property could be used to build peptides with a geometry not usually seen in natural peptides. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Structural and electronic properties of diastereomers of tetrahydrofuran amino acids (TAA) derived tripeptide, Boc‐TAA‐Leu‐Val‐OMe, are studied using density functional theory. Predicted secondary folding patterns with hydrogen bonded pseudocycles of different sizes in peptides containing (2R,5S)‐cis‐TAA and (2S,5R)‐cis‐TAA are confirmed by detailed NMR studies of both, and single crystal X‐ray analysis of the former. A novel unusual folding pattern emanating from three‐centered hydrogen bond is found in peptide with (2R,5S)‐cis relationship. Stereochemical control on the orientation of interacting sites is substantiated by structural analysis of the peptides. Using natural bonding orbital and atoms in molecules analyses, charge transfer interactions are analyzed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Experimental vibrational spectroscopic studies and density functional theory (DFT) calculations of the di‐amino acid peptide derivatives α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu have been undertaken. Raman and infrared spectra have been recorded for samples in the solid state. DFT simulations were conducted using the B3‐LYP correlation functional and the cc‐pVDZ basis set to determine energy minimized/geometry optimized structures (based on a single isolated molecule in the gaseous state). Normal coordinate calculations have provided vibrational assignments for fundamental modes, including their potential energy distributions. Significant differences are observed between α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu both in the computed structures and in the vibrational spectra. The combination of experimental and calculated spectra provide an insight into the structural and vibrational spectroscopic properties of di‐amino acid peptide derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The Raman and Infrared (IR) spectra of poly(methyl methacrylate) (PMMA) membranes plasticized by ionic liquids of the (1 − x)[1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI)],xLiTFSI type, where BMI+ is the 1‐butyl‐3‐methylimidazolium cation and TFSI the bis(trifluoromethanesulfonyl)imide anion, are analyzed for a lithium bis(trifluoromethane sulfone)imide (LiTFSI) mole fraction x = 0.23 and PMMA contents from 0 to 50 wt%. The lithium is found to have an average coordination of about three CO groups and less than one TFSI anion. It plays the role of a cross‐linker between the ester groups of PMMA and the nonvolatile ionic liquid. Addition of PMMA to the (1 − x)(BMITFSI),xLiTFSI ionic liquid lowers the conductivity but might improve the lithium transference number by transforming the [Li(TFSI)2] anionic clusters present in the pure ionic liquid into a mixed coordination by ester groups and TFSI anions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Novel β‐cyclodextrin (β‐CD) dimers with aromatic diamine linkers, 1,3‐(aminomethyl)‐benzylamine‐bridged bis(6‐amino‐6‐deoxy‐β‐CD) (2) , 4,4′‐diaminodiphenylmethano‐bridged bis(6‐amino‐6‐deoxy‐β‐CD) (3) , and 4,4′‐ ethylenedianiline‐bridged bis(6‐amino‐6‐deoxy‐β‐CD) (4) , were synthesized. The inclusion complexation behaviors of these compounds, together with 4,4′‐aminophenyl ethyl‐bridged bis(6‐amino‐6‐deoxy‐β‐CD) (5) , with substrates such as acridine red (AR), neutral red (NR), ammonium 8‐anilino‐1‐naphthalenesulfonate (ANS), sodium 2‐(p‐toluidinyl) naphthalenesulfonate (TNS), rhodamine B (RhB), and brilliant green (BG), were investigated by ultraviolet, fluorescence, circular dichroism, and 2D NMR spectroscopy. The results indicated that the two linked CD units cooperatively bound to a guest, and the molecular binding affinity toward substrates, especially curved guest ANS and linear guests such as NR and AR, was increased. The linker length between two CD units played a crucial role in the molecular recognition of the hosts with guest dyes. The binding constants of the hosts for AR, TNS, ANS, and RhB decreased with increasing linker length in hosts 2‐4 . Moreover, structurally similar hosts 3 and 5 exhibited very different binding behavior for the guests. Host 5 showed much higher Ks values toward positively charged guests and lower Ks toward negatively charged guests than host 3 . The 2D NMR spectra of hosts 3 and 5 with RhB were acquired to understand the binding difference between 3 and 5 . The molecular binding ability and selectivity of model substrates by these hosts were sufficiently investigated to reveal not only the cooperative contributions of the linker group and CD cavities upon inclusion complexation with dye guest molecules, but also the controlling factors for the molecular selective binding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Monomers of 5‐mercapto‐1,3,4‐thiadiazole‐2‐thione (bismuthiol) were studied using an experimental matrix‐isolation technique as well as by carrying out theoretical quantum chemical calculations. The calculations, performed using the quadratic configuration interaction method with single and double excitations (QCISD)/6‐31++G(d,p)//DFT(B3LYP)/6‐311++G(2d,p), predict that the thione–thiol tautomer of bismuthiol should be significantly (by more than 19 kJ mol?1) more stable than other tautomeric forms. Accordingly, only the signatures of the thione–thiol tautomer were observed in the FT‐IR spectrum of bismuthiol, recorded directly after deposition of an Ar matrix. UV (λ > 320 nm) irradiation induced the conversion of the thione–thiol tautomer into the dithiol form. Analogous investigations were carried out for two related compounds: 5‐methyl‐1,3,4‐thiadiazole‐2‐thione and 5‐methylthio‐1,3,4‐thiadiazole‐2‐thione. For these two species, only the thione tautomeric forms were observed after deposition of Ar matrices. These tautomers were predicted (by QCISD calculations) to be more stable (by at least 19 kJ mol?1) than other tautomeric forms. Upon UV irradiation, the most stable thione forms of these compounds were transformed into the corresponding thiol tautomers. Direct observation of the thione → thiol phototautomeric processes provides a clear proof that intramolecular proton transfer reaction can occur in molecules, such as bismuthiol, in spite of the increased NH···S distance, in comparison to other phototautomerizing species studied so far. All the isomers of the studied compounds (substrates and products of the photoreactions) were identified by comparison of their IR spectra with the spectra calculated at the DFT(B3LYP)/6‐311++G(2d,p) level of theory for possible isomeric structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Nitroaldol reaction of phenylsulfonylnitromethane with formaldehyde affords a mixture of 2,4‐dinitro‐2,4‐bis(phenylsulfonyl)butan‐1‐ol and 2,4‐dinitro‐2,4‐ bis(phenylsulfonyl)pentane‐1,5‐diol. Treatment of this mixture with base followed by reacidification affords 1,1'‐[(1,3‐dinitro‐1,3‐propanediyl)bis(sulfonyl)]bis(benzene) as a mixture of (R*, R*) and (R*, S*)‐diastereomers from which the (R*, S*)‐diastereomer can be obtained pure. The intermediate in the nitroaldol reaction is (1‐nitroethenyl)sulfonylbenzene and, if dienes are present, additional products are also obtained. If either (E)‐2‐methyl‐1,3‐pentadiene or 1‐(1‐methylethenyl)cyclohexene are present, typical Diels‐Alder adducts are obtained with the major isomers explainable by assuming a transition state in which the nitro group is endo. If furan is present, its formal conjugate addition product, 2‐[2‐nitro‐2‐(phenylsulfonyl)ethyl]furan, is formed. If cyclooctatetraene is present, it first dimerizes and then affords isomeric Diels‐Alder cycloadducts of the dimer. Semiempirical calculations comparing the LUMO energies of (1‐nitroethenyl)sulfonylbenzene to the corresponding trans‐1,2 isomer are presented to explain relative reactivity of 1,1‐ and 1,2‐disubstituted dienophiles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Interactions between niflumic acid and native and hydroxypropylated α‐ and β‐cyclodextrins (CDs) were investigated by 1H NMR, UV‐vis spectroscopy, densimetry, and calorimetry at pH = 7.4 (phosphate buffer) and T = 298.15 K. Thermodynamic parameters of 1:1 complex formation were calculated and discussed in terms of influence of cavity size and availability of hydroxypropyl substituents on the complex stability. The 1H NMR data indicated the inclusion of niflumic acid into macrocyclic cavity of all CDs under study. It was found that both phenyl and pyridine rings of niflumic acid molecule can be included in the cyclodextrin cavity. The co‐existence of two different kinds of 1:1 inclusion complexes in the solution was suggested. In spite of the fact that binding of niflumic acid with α‐cyclodextrin is more enthalpically favorable, stability of the inclusion complexes is very low due to the enthalpy–entropy compensation effect. Complex formation of β‐CDs with niflumic acid is characterized by the higher enthalpy and entropy changes caused by more intense dehydration. Introduction of hydroxypropyl groups in the cyclodextrin molecule was found to promote the binding with niflumic acid. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Solvolysis rates of 2‐(aryldimethylsilyl)‐1‐methylethyl and 2‐(aryldimethylsilyl)‐1‐tert‐butylethyl trifluoroacetates were determined conductimetrically in 60% (v/v) aqueous ethanol. The effects of aryl substituents at the silicon atom on the solvolysis rates at 50 °C were correlated with parameters of r+ = 0.15 with the Yukawa–Tsuno equation, giving ρ values of ?1.5 for both secondary α‐Me and αtert‐Bu systems. The ρ values for those secondary systems are less negative than ?1.75 for the 2‐(aryldimethylsilyl)ethyl system that proceeds by the Eaborn (non‐vertical) mechanism, while they are distinctly more negative than ?0.99 for 2‐(aryldimethylsilyl)‐1‐phenylethyl system that should proceed by the Lambert (vertical) mechanism. There was a fairly linear relationship between the reaction constants (ρ) for the β‐silyl substituent effects and the solvolysis reactivities for a series of β‐silyl substrates. The solvolyses of the α‐Me and tert‐Bu substrates proceed through the transition state (TS) with an appreciable degree of the β‐silyl participation, close to the Eaborn (non‐vertical) TS rather than to the Lambert (vertical) TS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Cyclonona‐3,5,7‐trienylidene ( 1 ) changes from being a transition state (TS) to minimum states when substituted by α‐methyl groups and ?‐X, where X = CMe2, NMe, PMe, O, S, cyclopropyl, and SiMe2 ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , respectively) at density functional theory. Specifically, the parent carbene 1 exhibits a negative vibrational force constant and proves to be an unreachable electrophilic TS while shows Cs symmetry with an NBO atomic charge of +0.70 on its carbenic center. It has a triplet ground state with a rather small singlet‐triplet energy gap (ΔEs–t = ?4.1 kcal/mol). In contrast, all of its seven scrutinized derivatives enjoy reachable global minima, with C1 symmetry, desired nucleophilicity, and singlet closed shell (Scs) ground states (for all but 8 which remains triplet). Stability is indicated by relative ΔEs–t values: 2 > 3 > 4 > 5 > 6 > 7 > 1 > 8 . The highest ΔEs–t as well as NBO carbenic atomic negative charge (?0.74) are displayed by 2 . Our carbenes ( 2 , 3 , 4 , 5 , 6 , 7 ) appear more nucleophilic than the synthesized N‐heterocyclic carbenes (imidazol‐2‐ylidenes). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Composite ZnO/SiO2 nanoparticles were made by flame spray pyrolysis (FSP). Characteristics of the product powder and its crystallization behavior on post‐calcination were evaluated. Polyhedral aggregates of nano‐sized primary particles consisting of ZnO nano‐crystals 1–3 nm in size and amorphous SiO2 were obtained by FSP. A short residence time in the flame can result in the co‐existence of the ZnO and SiO2 clusters without substitution or reaction hindering each other's grain growth. There was almost no change in the XRD pattern by calcination at 600 °C for 2 h, suggesting a high thermal stability of the ZnO nano‐crystals in the composite particles. A pure α‐willemite phase was obtained at 900 °C. At this calcination temperature, dC and dBET of the powder were 63 and 44 nm, respectively. The nano‐composite structure of the FSP‐made particles can suppress crystalline growth of ZnO during calcination to maintain a high reactivity of ZnO with SiO2, obtaining pure α‐willemite with high specific surface area at low calcination temperatures.  相似文献   

18.
This paper reports about high reactivity of α‐silylamines in the reaction with CCl4. Unlike Et3N, α‐silylamines rapidly react with CCl4 upon irradiation with daylight to form α‐silylamine hydrochloride salts in 92–98% yields. The influence of structure of α‐silylamines and solvent on the degree of conversion was displayed. The interaction of α‐silylamines with CCl4 was studied by NMR, ESR, and IR spectroscopy. C‐centered radicals of α‐silylamines were detected by ESR spectroscopy with spin traps (MNP, ND, and PBN) in reaction mixtures in CH3CN and C6H6 and it show the radical character of this reaction. Both CH3CN and C6H6 serve as solvents as well as reagents for this reaction. A mechanism of an interaction between α‐silylamines and CCl4 is discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
3‐Methyl‐2(1H)‐quinoxalinone and three derivatives (3,7‐dimethyl‐2(1H)‐quinoxalinone, 3‐methyl‐6,7‐dichloro‐2(1H)‐quinoxalinone and 3‐methyl‐7‐nitro‐2(1H)‐quinoxalinone) have been synthesised and analysed by 1H NMR and IR spectral spectroscopies. The crystal structures have been determined at room temperature from X‐ray single crystal diffraction data for three of them and from powder diffraction data for the nitro derivative. 3‐Methyl‐2(1H)‐quinoxalinone crystallises in the P21/c monoclinic system, 3,7‐dimethyl‐2(1H)‐quinoxalinone in the Pbca orthorhombic system and the two others compounds in the P$\overline {1} $ triclinic system. For the nitro derivative, C? H$\cdots $ N short contacts are established between the carbon of the methyl and the double bounded nitrogen of the ring. For the three other compounds N? H$\cdots $ O hydrogen bonds involve the atoms of the heterocyclic ring. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The acylation of lithium (±)‐spiro‐γ‐lactone enolate 5 by the O‐protected methyl (?)‐(S)‐lactate or the O‐protected methyl (+)‐(S)‐mandelate occurs through enantio‐differentiating reactions. The (S,S)‐enolate 5 is the most reactive with the lactate whereas the (R,R)‐enolate 5 selectively reacts with the mandelate. According to theoretical calculations at the B3LYP/6‐31G(++)(d,p) level of theory of 40 intermediates of this Claisen condensation, the experimental results are compatible with a previous chelation of the ester by an auxiliary cation lithium arising from the medium. The addition reaction occurs through a chelation process mediated by the counterion of the enolate. More stable tetrahedral intermediates including two lithium cations result from an antiperiplanar transition state. These results clearly demonstrate that the presence of a second lithium cation (the first lithium cation is solvated by di‐isopropylamine and the second one is solvated by a THF molecule or a di‐isopropylamide anion) stabilizes the tetrahedral intermediate and is compatible with an antiperiplanar transition state according to the Felkin–Anh model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号