首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new strategy to realize efficient white‐light emission from a binary fluorene‐based copolymer (PF‐Phq) with the fluorene segment as a blue emitter and the iridium complex, 9‐iridium(III)bis(2‐(2‐phenyl‐quinoline‐N,C3′)(11,13‐tetradecanedionate))‐3,6‐carbazole (Phq), as a red emitter has been proposed and demonstrated. The photo‐ and electroluminescence properties of the PF‐Phq copolymers were investigated. White‐light emission with two bands of blue and red was achieved from the binary copolymers. The efficiency increased with increasing concentration of iridium complex, which resulted from its efficient phosphorescence emission and the weak phosphorescent quenching due to its lower triplet energy level than that of polyfluorene. In comparison with the binary copolymer, the efficiency and color purity of the ternary copolymers (PF‐Phq‐BT) were improved by introducing fluorescent green benzothiadiazole (BT) unit into polyfluorene backbone. This was ascribed to the exciton confinement of the benzothiadiazole unit, which allowed efficient singlet energy transfer from fluorene segment to BT unit and avoided the triplet quenching resulted from the higher triplet energy levels of phosphorescent green emitters than that of polyfluorene. The phosphorescence quenching is a key factor in the design of white light‐emitting polyfluorene with triplet emitter. It is shown that using singlet green and triplet red emitters is an efficient approach to reduce and even avoid the phosphorescence quenching in the fluorene‐based copolymers. The strategy to incorporate singlet green emitter to polyfluorene backbone and to attach triplet red species to the side chain is promising for white polymer light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 453–463, 2008  相似文献   

2.
An indenofluorene‐based copolymer containing blue‐, green‐, and red light‐emitting moieties was synthesized by Suzuki polymerization and examined for application in white organic light‐emitting diodes (WOLEDs). Tetraoctylindenofluorene (IF), 2,1,3‐benzothiadiazole (BT), and 4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole (DBT) derivatives were used as the blue‐, green‐, and red‐light emitting structures, respectively. The number‐average molecular weight of the polymer was determined to be 25,900 g/mol with a polydispersity index of 2.02. The polymer was thermally stable (Td = ~398 °C) and quite soluble in common organic solvents, forming an optical‐quality film by spin casting. The EL characteristics were fine‐tuned from the single copolymer through incomplete fluorescence energy transfer by adjusting the composition of the red/green/blue units in the copolymer. The EL device using the indenofluorene‐based copolymer containing 0.01 mol % BT and 0.02 mol % DBT units ( PIF‐BT01‐DBT02 ) showed a maximum brightness of 4088 cd/m2 at 8 V and a maximum current efficiency of 0.36 cd/A with Commission Internationale de L'Eclairage (CIE) coordinates of (0.34, 0.32). The EL emission of PIF‐BT01‐DBT02 was stable with respect to changes in voltage. The color emitted was dependent on the thickness of the active polymer layer; layer (~60 nm) too thin was unsuitable for realizing WOLED via energy transfer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3467–3479, 2009  相似文献   

3.
A series of star‐like dopant/host single‐polymer systems with a D‐A type star‐shaped orange core and three blue polyfluorene arms were designed and synthesized. Through tuning the doping concentration of the orange core and thermal annealing treatment of white polymer light‐emitting diodes based on them, highly efficient white electroluminescence has been achieved. A typical single‐layer device (ITO/PEDOT:PSS/polymer/Ca/Al) realized pure white emission with a luminous efficiency of 16.62 cd A?1, an external quantum efficiency of 6.28% and CIE coordinates of (0.33, 0.36) for S‐WP‐002TPB3 containing 0.02 mol % orange core. The high efficiency of the devices could be mainly attributed to the suppressed concentration quenching of the dopant units, more efficient energy transfer from polymer host to orange dopant and thermal annealing‐induced α‐phase polyfluorene (PF) self‐dopant in amorphous PF host. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
We have synthesized a novel carrier‐transporting copolymer and a nonconjugated light‐emitting polymer. The carrier‐transporting copolymer has a triphenylamine moiety as a hole‐transporting unit and a triazine moiety as an electron‐transporting unit, both of which are located in the polymer side chain. The nonconjugated light‐emitting polymer has a perylene moiety, which acts as an emitting unit in the polymer side chain. These polymers are very soluble in most organic solvents, such as monochlorobenzene, tetrahydrofuran, chloroform, and benzene. A single‐layered electroluminescent device consisting of ITO/copolymer and emitting‐material 4‐(dicyanomethylene)‐2‐methyl‐6‐(4‐dimethylaminostyryl)‐4H‐pyran (DCM) or light‐emitting polymer)/Al mixtures exhibits maximum external quantum efficiency when the concentration of the emitting material is 30 wt %. The device emits red or blue light according to the emitting material. When CsF is used as the electron‐injecting material, the drive voltage decreases drastically to 7 V, and the highest quantum efficiency is 0.5%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2733–2743, 2003  相似文献   

5.
A series of white polymer light emitting displays (PLEDs) based on a polymer blend of polyalkylfluorenes and poly(2‐methoxy‐5,2′‐ethyl‐hexyloxy‐1,4‐phenylene vinylene) (MEH‐PPV) was developed. MEH‐PPV or red light emitting alkyfluorene copolymer (PFR) was blended with blue light emitting alkyfluorene copolymer (PFB), and MEH‐PPV was blended with both green light emitting alkyfluorene copolymer (PFG) and PFB to generate white light emission PLEDs. Low turn on voltage (2.7 V), high brightness (12,149 nits), high efficiency (4.0 cd/A, 4.0 lm/W), and good color purity (Commission Internationale de L'Eclairage (CIEx,y) co‐ordinates (0.32, 0.34)) were obtained for the white PLEDs based on the PFB and MEH‐PPV polymer blend. Exciplex formation in the interface between PFR and PFB induced a new green emission peak for these two components based white PLEDs. As a result, strong white emission (4078 nits) was obtained by mixing the red, green, and blue (RGB) three primary colors. High color purity of blue (CIE, x = 0.14, y = 0.08), green (CIE, x = 0.32, y = 0.64) and red (CIE, x = 0.67, y = 0.33) emissions was achieved for white PLEDs combining with dielectric interference color‐filters. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 330–341, 2007  相似文献   

6.
A series of conjugated blue‐light‐emitting copolymers, PTC‐1 , PTC‐2 , and PTC‐3, comprised different ratios of electron‐withdrawing segments (spirobifluorene substituted with cyanophenyl groups) and electron‐donating segments (tricarbazole‐triphenylamines), has been synthesized. The structures of these polymers were characterized and their thermal, photophysical, electrochemical, and electroluminescence properties were measured. Incorporation of rigid spirobifluorene units into the copolymers led to blue‐shifted absorption peaks in dilute toluene solution. Cyclic voltammetric measurement indicated the bandgaps of the polymers were in the range of 2.77–2.94 eV. It was found that increasing cyanophenyl‐spirobifluorene content in the polymer backbone lowered both the HOMO and LUMO energy levels of the copolymers, which was beneficial for electron injection/transporting in the polymer layer of the device. OLED device evaluation indicated that all the polymers emitted sky blue to deep blue light when the pure polymers were used as the emissive layers in the devices with a configuration of ITO/PEDOT:PSS/polymers/CsF/Ca/Al. The devices have been optimized by doping 30 wt % PBD into the polymer layers. Among the doped devices, PTC‐2 showed the best performance with the turn‐on voltage of 3.0 V, maximum brightness of 7257 cd/m2, maximum current efficiency of 1.76 cd/A, and CIE coordinates of (0.15, 0.14). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 292–301, 2010  相似文献   

7.
New white polymeric light‐emitting diodes from phosphorescent single polymer systems have been developed using a blue‐light‐emitting fluorene monomer copolymerized with a red‐light‐emitting phosphorescent dye, and end‐capped with a green‐light‐emission dye. All of the copolymers have good thermal stability with 5% weight loss temperatures at 380–413 °C and glass transition temperatures at 75–137 °C. We obtained white‐light‐emission devices by adjusting the molar ratio of the comonomers with a structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid)/polyvinylcarbazole (PVK)/emission layer/Ca/Ag. The highest brightness in such a device configuration is 300 cd/m2 at a current density of 2900 A/m2 with high white color quality (Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.34)). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 464–472, 2008  相似文献   

8.
Two orange phosphorescent iridium complex monomers, 9‐hexyl‐9‐(iridium (III)bis(2‐(4′‐fluorophenyl)‐4‐phenylquinoline‐N,C2′)(tetradecanedionate‐11,13))‐2,7‐dibromofluorene (Br‐PIr) and 9‐hexyl‐9‐(iridium(III)bis(2‐(4′‐fluorophenyl)‐4‐methylquinoline‐N,C2′)(tetradecanedionate‐11,13))‐2,7‐dibromofluorene (Br‐MIr), were successfully synthesized. The Suzuki polycondensation of 2,7‐bis(trimethylene boronate)‐9,9‐dioctylfluorene with 2,7‐dibromo‐9,9‐dioctylfluorene and Br‐PIr or Br‐MIr afforded two series of copolymers, PIrPFs and MIrPFs, in good yields, in which the concentrations of the phosphorescent moieties were kept small (0.5–3 mol % feed ratio) to realize incomplete energy transfer. The photoluminescence (PL) of the copolymers showed blue‐ and orange‐emission peaks. A white‐light‐emitting diode with a configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/PIr05PF (0.5 mol % feed ratio of Br‐PIr)/Ca/Al exhibited a luminous efficiency of 4.49 cd/A and a power efficiency of 2.35 lm/W at 6.0 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.46, 0.33). The CIE coordinates were improved to (0.34, 0.33) when copolymer MIr10PF (1.0 mol % feed ratio of Br‐MIr) was employed as the white‐emissive layer. The strong orange emission in the electroluminescence spectra in comparison with PL for these kinds of polymers was attributed to the additional contribution of charge trapping in the phosphorescent dopants. © 2007 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 45: 1746–1757, 2007  相似文献   

9.
We present a short, efficient synthetic route for the preparation of a novel polyfluorene copolymer (PF‐Q) containing two electron‐deficient, 2,4‐diphenylquinoline groups functionalized at the C‐9 positions of alternate fluorene units that form a three‐dimensional cardostructure. The presence of the rigid bulky pendent groups leads to a polyfluorene possessing a high glass‐transition temperature (207 °C) and very good thermal stability (5% weight loss observed at 460 °C). A photoluminescence study revealed that the Förster energy transfer from the excited quinoline groups to the polyfluorene backbone is very efficient; it also demonstrated that the commonly observed aggregate/excimer formation in polyfluorenes is suppressed very effectively in this polymer, even after it has been annealed at 150 °C for 20 h. A light emitting diode (LED) device prepared with PF‐Q as the emitting layer exhibits a stable blue emission with a maximum brightness of 1121 cd/m2 at 12 V and a maximum external quantum efficiency of 0.80% at 250 cd/m2. We also used PF‐Q, which contains diphenylquinoline units that behave as electron‐transporting side chains, as a host material and doped it with 2.4 wt % of a red‐emitting phosphorescent dye, Os(fppz), to realize a red electroluminescence with CIE color coordinates of (0.66, 0.34). The doped device exhibits a maximum external quantum efficiency of 6.63% (corresponding a luminance efficiency of 8.71 cd/A) at a current density of 47.8 mA/cm2, together with a maximum brightness of 10457 cd/m2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 859–869, 2005  相似文献   

10.
In a quest for the main‐chain chiral and highly stable blue‐light‐emitting π‐conjugated polymers, a novel series of soluble conjugated random and alternating copolymers (PF‐BN) derived from fluorene and axially chiral 1,1′‐binaphthol (BINOL) were successfully synthesized by Suzuki coupling polymerization. The polymer structures, optical properties, and their electrochemical properties were investigated by 1H NMR, TGA/DSC, UV‐Vis absorption, photoluminescence, cyclic voltammetry, circular dichroism spectroscopy, and DFT calculations. The blue‐light‐emitting BINOL‐containing copolymers with proper content of BINOL show highly efficient photoluminescence and ultra highly stable light‐emission with almost unchanged fluorescent spectra after annealing at 200 °C in air for 10 h. The joint experimental and theoretical study of the main‐chain chirality reveals that (1) the chirality of BINOL can be transferred to the polymer backbone, (2) the effective conjugation length is about one BINOL and three fluorenes, (3) the main active chiral block in the copolymers is probably composed by one BINOL with the other two or three fluorenes, and (4) the dihedral angle in the PF‐BN copolymers should be larger than 105°. The incorporation of BINOL into the polyfluorene backbone is an effective way to produce highly efficient and stable blue‐light‐emitting main‐chain chiral conjugated polymer with interesting optoelectronic properties. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3868–3879, 2010  相似文献   

11.
This article presents the synthesis and electroluminescent (EL) properties of a stable blue‐light‐emitting copolyfluorene ( P1 ) consisting of carbazole, oxadiazole and charge‐trapping anthracene groups by Suzuki coupling reaction. The hole‐transporting carbazole and electron‐transporting oxadiazole improve charges injection and transporting properties, whereas the anthracene is the ultimate emitting chromophore. The thermal, photophysical, electrochemical, and EL properties of P1 were investigated by thermogravimetric analysis, differential scanning calorimeter, optical spectroscopy, cyclic voltammetry, and EL devices fabrication and characterization. P1 demonstrated high‐thermal stability with thermal decomposition and glass tranistion temperatures above 400 and 145°C, respectively. In film state, P1 showed blue emission at 451 nm attributed to anthracene chromophore. Photophysical and electrochemical investigations demonstrate that effective energy transfer from fluorene to anthracene segments and charges trapping on anthracene segments leads to efficient and stable blue emission originating from anthracence. Polymer light‐emitting diodes using P1 as the emitting layer (ITO/PEDOT:PSS/ P1 /Ca/Al) exhibited excellent current efficiency (5.1 cd/A) with the CIE coordinate being (0.16, 0.11). The results indicate that copolyfluorene is a promising candidate for the blue‐emitting layer in the fabrication of efficient PLEDs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
A series of fluorene‐based copolymers composed of blue‐ and orange‐light‐emitting comonomers were synthesized through palladium‐catalyzed Suzuki coupling reactions. 9,9‐Dihexylfluorene and 2‐(2,6‐bis‐{2‐[1‐(9,9‐dihexyl‐9H‐fluoren‐2‐yl)‐1,2,3,4‐tetrahydroquinolin‐6‐yl]‐vinyl}‐pyran‐4‐ylidene)‐malononitrile (DCMF) were used as the blue‐ and orange‐light‐emitting chromophores, respectively. The resulting single polymers exhibited simultaneous blue (423/450 nm) and orange (580–600 nm) emissions from these two chromophores. By adjusting the fluorene and DCMF contents, white light emission could be obtained from a single polymer; a device with an ITO/PEDOT:PSS/polymer/Ca/Al configuration was found to exhibit pure white electroluminescence with Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.31), a maximum brightness of 1180 cd/m2, and a current efficiency of 0.60 cd/A. Furthermore, the white light emission of this device was found to be very stable with respect to variation of the driving voltage. The CIE coordinates of the device were (0.32, 0.29), (0.32, 0.29), and (0.33, 0.31) for driving voltages of 7, 8, and 10 V, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3380–3390, 2007  相似文献   

13.
We have synthesized a blue‐light‐emitting polyfluorene (PF) derivative ( PF‐CBZ‐OXD ) that presents bulky hole‐transporting carbazole and electron‐transporting oxadiazole pendent groups functionalized at the C‐9 positions of alternating fluorene units. The results from photoluminescence and electrochemical measurements indicate that both the side chains and the PF main chain retain their own electronic characteristics in the copolymer. An electroluminescent device incorporating this polymer as the emitting layer was turned on at 4.5 V; it exhibited a stable blue emission with a maximum external quantum efficiency of 1.1%. Moreover, we doped PF‐CBZ‐OXD and its analogue PF‐TPA‐OXD with a red‐light‐emitting iridium phosphor for use as components of phosphorescent red‐light emitters to investigate the effect of the host's HOMO energy level on the degree of charge trapping and on the electrophosphorescent efficiency. We found that spectral overlap and individual energy level matching between the host and guest were both crucial features affecting the performance of the electroluminescence devices. Atomic force microscopy measurements indicated that the dipolar nature of PF‐CBZ‐OXD , in contrast to the general nonpolarity of polydialkylfluorenes, provided a stabilizing environment that allowed homogeneous dispersion of the polar iridium triplet dopant. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2925–2937, 2007  相似文献   

14.
A series of new star‐shaped polymers with a triphenylamine‐based iridium(III) dendritic complex as the orange‐emitting core and poly(9,9‐dihexylfluorene) (PFH) chains as the blue‐emitting arms is developed towards white polymer light‐emitting diodes (WPLEDs). By fine‐tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single‐layer WPLEDs with the configuration of ITO (indium‐tin oxide)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A−1 and CIE coordinates of (0.35, 0.33), which is very close to the pure white‐light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star‐shaped white‐emitting single polymers that simultaneously consist of fluorescent and phosphorescent species.

  相似文献   


15.
White polymeric light‐emitting diode (WPLED) based on a single polymer, poly(3‐hexylthiophene‐alt‐9,9‐dioctylfluorene) (PTAF), has been successfully demonstrated. This conjugated alternating copolymer, PTAF, comprises 50 mol % of 3‐hexylthiophene which is an orange‐red color chromophore and 50 mol % 9,9‐dioctylfluorene which is a bluish‐green color chromophore. It was synthesized by Suzuki cross‐coupling reaction and has a molecular weight of 15,021 and polydispersity of 1.36. Nanocomposite consisting PTAF and graphene nanosheets enhances the optoelectronic properties and the device fabricated with a configuration of ITO/PEDOT:PSS/(PTAF + 1% graphene)/Ca/Al shows two‐color white electroluminescence with CIE 1931 coordinates of (0.28, 0.34). The white luminescence from a single polymer affords the WPLED device a simple structure and low fabrication cost. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

16.
A new aromatic host polymer poly{[1,4‐bis(9‐decylcarbazole‐3‐yl)‐2,3,5,6‐tetrafluorobenzene‐3,3′‐diyl]‐alt‐[N‐methylisatin‐2‐one‐3,3‐diyl]} (PICzFB) containing carbazole–tetrafluorinebeneze–carbazole moiety in the π‐conjugated interrupted polymer backbone was synthesized by superacid‐catalyzed metal‐free polyhydroxyalkylation. The resulted copolymer PICzFB showed a comparatively wide band gap up to 3.32 eV and high triplet energy (ET) of 2.73 eV due to confined conjugation by the δ? C bond interrupted polymer backbone. Blue and green light‐emitting devices with PICzFB as host, FIrpic and Ir(mppy)3 as phosphorescent dopants showed the maximum luminous efficiencies of 5.0 and 27.6 cd/A, respectively. The results suggested that the strategy of incorporating bipolar unit into the π‐conjugated interrupted polymer backbone can be a promising approach to obtain host polymer with high triplet level for solution‐processed blue and green phosphorescent polymer light‐emitting diodes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1037–1046  相似文献   

17.
In this study, luminescence electrospun (ES) nanofibers based on ternary blends of poly(9,9‐dioctylfluoreny‐2,7‐diyl) (PFO)/poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV)/poly(methyl methacrylate) (PMMA) were prepared from chloroform solutions using a single capillary spinneret. Effects of PFO/MEH‐PPV ratio on the morphology and photophysical properties were studied while the PMMA weight percentage was fixed at 90 wt %. The morphologies of the prepared ES fibers were characterized by FE‐SEM and fluorescence microscopy. The obtained fibers had diameters around a few hundred nm and pore sizes in the range of 30–35 nm. The emission colors of the PFO/MEH‐PPV/PMMA blend ES fibers changed from blue, white, yellowish‐green, greenish‐yellow, orange, to yellow, as the MEH‐PPV composition increased. In contrast, the emission colors of the corresponding spin‐coated films were blue, orange, pink‐red, red, and deep‐red. Based on the values of solubility parameters, the PFO and MEH‐PPV are miscible to each other and trapped in the PMMA matrix. Hence, energy transfer between these two polymers is possible. The smaller aggregated domains in the ES fiber compared to those of spin‐coated films possibly reduce the efficiency of energy transfer, leading to different emission colors. Also, the prepared ES fibers had higher photoluminescence efficiencies than those of the spin‐coated films. Pure white light‐emitting fibers prepared from the PFO/MEH‐PPV/PMMA blend ratio of 9.5/0.5/90 had the Commission Internationale de L'Eclairage (CIE) coordinate of (0.33, 0.31). Our results showed that different color light‐emitting ES fibers were produced through optimizing the composition of semiconducting polymer in the transparent polymer matrix. This type of ES fibers could have potential applications as new light sources or sensory materials for smart textiles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 463–470, 2009  相似文献   

18.
Four new copolyethers ( P1 – P4 ) consisting of two isolated emitting chromophores [2,5‐dihexyloxy‐1,4‐distyrylbenzene (HODSB) and 2,5‐dihexyloxy‐1,4‐di(4‐methylenestyryl)benzene (HOMDSB) for P1 and P2 , 2,5‐dihexyl‐1,4‐distyrylbenzene (HDSB) and HOMDSB for P3 and P4 ] in the backbone, in which P2 and P4 further contain electron‐transporting chromophores [7‐oxy‐4‐methylcoumarin (OMC)] in the side chain, were successfully prepared by the Heck coupling reaction. The photoluminescence spectra and quantum yields of the copolymers depended mainly on compositions of the isolated fluorophores. Their highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels were estimated from their cyclic voltammograms. Electrochemical investigations proved that the oxidation started at hole‐transporting DSB segments, whereas reduction began at electron‐transporting OMC groups in P2 and P4 . The electron affinity of P2 and P4 was enhanced by introducing electron‐transporting OMC chromophores. Double‐layer light‐emitting diodes (ITO/PEDOT:PSS / polymer/Al) of P1 and P2 revealed green electroluminescence, and those of P3 and P4 emitted blue light. Moreover, incorporation of OMC side groups effectively reduced turn‐on electric field and enhanced luminance efficiency of the EL devices due to increased electron affinity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 211–221, 2007  相似文献   

19.
A blue fluorescent polymer based on poly(vinyl carbazole) (PVK) and terfluorene, combined to make a chemical hybrid at the carbazole unit (PVK‐TF), is fully characterized in this study. PVK‐TF shows useful emission features, such as peaks at 400, 420, 437, 460, and 496 nm, depending on the processing conditions. It possesses a relatively high triplet energy level (2.23 eV), electrochemical stability, good film‐forming ability, and morphological stability. Based on this blue fluorescent material, highly efficient orange phosphorescent polymer light‐emitting diodes (PLEDs) were fabricated with a maximum efficiency of 21.99 cd A?1, and a maximum luminance of 19552.3 cd m?2. Single‐layer hybrid white PLEDs were developed, with a high color rendering index of 81.9 that emitted across the whole visible spectrum from 380 to 780 nm, corresponding to the Commission International de L'Eclairage coordinates x, y values of around (0.38, 0.40) and CCT = 3774, with a maximum current efficiency of 10.69 cd A?1, and a maximum brightness of 15723.3 cd m?2. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 587–595  相似文献   

20.
Light‐emitting diodes based on organic materials [organic light‐emitting diodes (OLEDs)] have attracted much interest over the past decade. Several different attempts have been made to realize multicolor OLEDs. This article describes a new approach based on energy transfer in a donor/acceptor system. A copolymer containing both donor and acceptor compounds as comonomer units is prepared. The polymer consists of a derivative of a luminescent dye [4‐dicyanmethylene‐2‐methyl‐6‐4H‐pyran (DCM); acceptor compound], which is copolymerized with fluorene (donor compound) to combine the properties of an electroactive polymer with a highly luminescent dye. Photochemical processing is achieved by UV irradiation of this copolymer in the presence of gaseous trialkylsilanes. This reagent selectively saturates the C?C bonds in the DCM comonomer units while leaving the fluorene units essentially unaffected. As a result of the photochemical process, the red electroluminescence of the acceptor compound vanishes, and the blue‐green electroluminescence from the polyfluorene units is recovered. Compared with previous approaches based on polymer blends, this copolymer approach avoids problems associated with phase‐separation phenomena in the active layer of OLEDs. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4317–4327, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号