首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Broadband dielectric spectroscopy was used to study the segmental (α) and secondary (β) relaxations in hydrogen‐bonded poly(4‐vinylphenol)/poly(methyl methacrylate) (PVPh/PMMA) blends with PVPh concentrations of 20–80% and at temperatures from ?30 to approximately glass‐transition temperature (Tg) + 80 °C. Miscible blends were obtained by solution casting from methyl ethyl ketone solution, as confirmed by single differential scanning calorimetry Tg and single segmental relaxation process for each blend. The β relaxation of PMMA maintains similar characteristics in blends with PVPh, compared with neat PMMA. Its relaxation time and activation energy are nearly the same in all blends. Furthermore, the dielectric relaxation strength of PMMA β process in the blends is proportional to the concentration of PMMA, suggesting that blending and intermolecular hydrogen bonding do not modify the local intramolecular motion. The α process, however, represents the segmental motions of both components and becomes slower with increasing PVPh concentration because of the higher Tg. This leads to well‐defined α and β relaxations in the blends above the corresponding Tg, which cannot be reliably resolved in neat PMMA without ambiguous curve deconvolution. The PMMA β process still follows an Arrhenius temperature dependence above Tg, but with an activation energy larger than that observed below Tg because of increased relaxation amplitude. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3405–3415, 2004  相似文献   

2.
The behavior of relatively monodisperse adsorbed poly(methyl methacrylate) (PMMA) samples, from 19 to 587 kDa on silica, was studied using modulated differential scanning calorimetry and FTIR. On untreated Cab? O? Sil silica, the glass transition temperatures (Tgs) were higher (by around 30 °C), and the transitions were significantly broader (by a factor of 5–6) than those for the corresponding bulk samples. While the Tgs for the bulk polymers showed the expected dependence on molecular mass, the polymers on untreated silica showed little dependence, i.e., at the same adsorbed amounts, the glass transitions were very similar. The FTIR spectra of the adsorbed PMMA (on untreated silica) showed the presence of at least two resonances, one for the bound (hydrogen bonded to surface silanols) and another for free carbonyls. Fitting of the spectra allowed the estimation of the bound fractions of carbonyls that were dependent on the adsorbed amount, but not molecular mass. On Cab? O? Sil treated with hexamethyldisilizane (HMDS), the adsorbed PMMA exhibited glass transition behavior with little molecular‐mass dependence; the Tgs for the different PMMA samples were very similar to those of the high‐molecular mass bulk polymer, but with additional broadening of about a factor of 2. FTIR spectra for the PMMA samples on the treated silica did not show significant amounts of any of the hydrogen‐bonded carbonyl groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 649–658, 2008  相似文献   

3.
The soluble poly(methyl methacrylate‐co‐octavinyl‐polyhedral oligomeric silsesquioxane) (PMMA–POSS) hybrid nanocomposites with improved Tg and high thermal stability were synthesized by common free radical polymerization and characterized using FTIR, high‐resolution 1H NMR, 29Si NMR, GPC, DSC, and TGA. The POSS contents in the nanocomposites were determined based on FTIR spectrum, revealing that it can be effectively adjusted by varying the feed ratio of POSS in the hybrid composites. On the basis of the 1H NMR analysis, the number of the reacted vinyl groups on each POSS molecules was determined to be about 6–8. The DSC and TGA measurements indicated that the hybrid nanocomposites had higher Tg and better thermal properties than the pure PMMA homopolymer. The Tg increase mechanism was investigated using FTIR, displaying that the dipole–dipole interaction between PMMA and POSS also plays very important role to the Tg improvement besides the molecular motion hindrance from the hybrid structure. The thermal stability enhances with increase of POSS content, which is mainly attributed to the incorporation of nanoscale inorganic POSS uniformly dispersed at molecular level. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5308–5317, 2007  相似文献   

4.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

5.
Micromechanical string resonators are used as a highly sensitive tool for the detection of glass transition (Tg or α relaxation) and sub‐Tg (β relaxation) temperatures of polystyrene (PS) and poly (methyl methacrylate) (PMMA). The characterization technique allows for a fast detection of mechanical relaxations of polymers with only few nanograms of sample in a quasi‐static condition. The polymers are spray coated on one side of silicon nitride (SiN) microstrings. These are pre‐stressed suspended structures clamped on both ends to a silicon frame. The resonance frequency of the microstrings is then monitored as a function of increasing temperature. α and β relaxations in the polymer affect the net static tensile stress of the microstring and result in measureable local frequency slope maxima. Tg of PS and PMMA is detected at 91 ±2°C and 114 ±2°C, respectively. The results match well with the glass transition values of 93.6°C and 114.5°C obtained from differential scanning calorimetry of PS and PMMA, respectively. The β relaxation temperatures are detected at 30 ± 2°C and 33 ± 2°C for PS and PMMA which is in accordance with values reported in literature. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1035–1039  相似文献   

6.
To have a better insight into the effect of interaction between polymer matrix and clay on the properties of nanocomposite, poly(methyl methacrylate)/clay nanocomposites were prepared by a heterocoagulation method. Using a reactive cationic emulsifier, methacryloyloxyethyltrimethyl ammonium chloride (METAC), a strong polymer–clay interaction was obtained with the advantage of keeping a consistent polymer matrix property. X‐ray diffraction and transmission electronic microscopy indicated an exfoliated structure in nanocomposites. The glass transition temperature (Tg) of the nanocomposites was measured by DSC and DMA. The DMA results showed that with a strong interaction, PMMA–METAC nanocomposite showed a 20 °C enhancement in glass transition temperature (Tg), whereas a slight increase in Tg was observed for PMMA–cetyl trimethylammonium bromide (CTAB)/clay nanocomposite with a weak interaction. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 733–738, 2010  相似文献   

7.
Alumina/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by an in situ free‐radical polymerization process with 38 and 17 nm diameter γ‐alumina nanoparticles. At extremely low filler weight fractions (<1.0 wt % of 38 nm fillers or < 0.5 wt % of 17 nm fillers) the glass‐transition temperature (Tg) of the nanocomposites drops by 25 °C when compared to the neat polymer. Further additions of filler (up to 10 wt %) do not lead to additional Tg reductions. The thermal behavior is shown to vary with particle size, but this dependence can be normalized with respect to a specific surface area. The nanocomposite Tg phenomenon is hypothesized to be because of nonadhering nanoparticles that serve as templates for a porous system with many internal interfaces that break up the percolating structure of dynamically heterogeneous domains recently suggested by Long, D.; and Lequeux, F. Eur Phys J E 2001, 4, 371 to be responsible for the Tg reductions in polymer ultrathin films. The results also point to a far field effect of the nanoparticle surface on the bulk matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4371–4383, 2004  相似文献   

8.
ABCBA‐type pentablock copolymers of methyl methacrylate, styrene, and isobutylene (IB) were prepared by the cationic polymerization of IB in the presence of the α,ω‐dichloro‐PS‐b‐PMMA‐b‐PS triblock copolymer [where PS is polystyrene and PMMA is poly(methyl methacrylate)] as a macroinitiator in conjunction with diethylaluminum chloride (Et2AlCl) as a coinitiator. The macroinitiator was prepared by a two‐step copper‐based atom transfer radical polymerization (ATRP). The reaction temperature, ?78 or ?25 °C, significantly affected the IB content in the resulting copolymers; a higher content was obtained at ?78 °C. The formation of the PIB‐b‐PS‐b‐PMMA‐b‐PS‐b‐PIB copolymers (where PIB is polyisobutylene), prepared at ?25 (20.3 mol % IB) or ?78 °C (61.3 mol % IB; rubbery material), with relatively narrow molecular weight distributions provided direct evidence of the presence of labile chlorine atoms at both ends of the macroinitiator capable of initiation of cationic polymerization of IB. One glass‐transition temperature (Tg), 104.5 °C, was observed for the aforementioned triblock copolymer, and the pentablock copolymer containing 61.3 mol % IB showed two well‐defined Tg's: ?73.0 °C for PIB and 95.6 °C for the PS–PMMA blocks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3823–3830, 2005  相似文献   

9.
The effects of confinement on glass transition temperature (Tg) and physical aging are measured in polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(2-vinyl pyridine) (P2VP) nanocomposites containing 10- to 15-nm-diameter silica nanospheres or 47-nm-diameter alumina nanospheres. Nanocomposites are made by spin coating films from sonicated solutions of polymer, nanofiller, and dye. The Tgs and physical aging rates are measured by fluorescence of trace levels of dye in the films. At 0.1–10 vol % nanofiller, Tg values can be enhanced or depressed relative to neat, bulk Tg (Tg,bulk) or invariant with nanofiller content. For alumina nanocomposites, Tg increases relative to Tg,bulk by as much as 16 K in P2VP, decreases by as much as 5 K in PMMA, and is invariant in PS. By analogy with thin polymer films, these results are explained by wetted P2VP–nanofiller interfaces with attractive interactions, nonwetted PMMA–nanofiller interfaces (free space at the interface), and wetted PS–nanofiller interfaces lacking attractive interactions, respectively. The presence of wetted or nonwetted interfaces is controlled by choice of solvent. For example, 0.1–0.6 vol % silica/PMMA nanocomposites exhibit Tg enhancements as large as 5 K or Tg reductions as large as 17 K relative to Tg,bulk when films are made from methyl ethyl ketone or acetic acid solutions, respectively. A factor of 17 reduction of physical aging rate relative to that of neat, bulk P2VP is demonstrated in a 4 vol % alumina/P2VP nanocomposite. This suggests that a strategy for achieving nonequilibrium, glassy polymeric systems that are stable or nearly stable to physical aging is to incorporate well-dispersed nanoparticles possessing attractive interfacial interactions with the polymer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2935–2943, 2006  相似文献   

10.
Nanostructured amorphous bulk polymer samples were produced by processing them with small molecule hosts. Urea (U) and gamma‐cyclodextrin (γ‐CD) were utilized to form crystalline inclusion compounds (ICs) with low and high molecular weight as‐received (asr‐) poly(vinyl acetate) (PVAc), poly(methyl methacrylate) (PMMA), and their blends as included guests. Upon careful removal of the host crystalline U and γ‐CD lattices, nanostructured coalesced (c‐) bulk PVAc, PMMA, and PVAc/PMMA blend samples were obtained, and their glass‐transition temperatures, Tgs, measured. In addition, non‐stoichiometric (n‐s)‐IC samples of each were formed with γ‐CD as the host. The Tgs of the un‐threaded, un‐included portions of their chains were observed as a function of their degree of inclusion. In all the cases, these nanostructured PVAc and PMMA samples exhibited Tgs elevated above those of their as‐received and solution‐cast samples. Based on their comparison, several conclusions were reached concerning how their molecular weights, the organization of chains in their coalesced samples, and the degree of constraint experienced by un‐included portions of their chains in (n‐s)‐γ‐CD‐IC samples with different stoichiometries affect their chain mobilities and resultant Tgs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1041–1050  相似文献   

11.
This study used refractometry, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and dielectric analysis to assess the viscoelastic properties and phase behavior of blends containing 0–20% (w/w) 12‐tert‐butyl ester dendrimer in poly(methyl methacrylate) (PMMA). Dendritic blends were miscible up through 12%, exhibiting an intermediate glass‐transition temperature (Tg; α) between those of the two pure components. Interactions of PMMA C?O groups and dendrimer N? H groups contributed to miscibility. Tg decreased with increasing dendrimer content before phase separation. The dendrimer exhibited phase separation at 15%, as revealed by Rayleigh scattering in ultraviolet–visible spectra and the emergence of a second Tg in dielectric studies. Before phase separation, clear, secondary β relaxations for PMMA were observed at low frequencies via dielectric analysis. Apparent activation energies were obtained through Arrhenius characterization. A merged αβ process for PMMA occurred at higher frequencies and temperatures in the blends. Dielectric data for the phase‐separated dendrimer relaxation (αD) in the 20% blend conformed to Williams–Landel–Ferry behavior, which allowed the calculation of the apparent activation energy. The αD relaxation data, analyzed both before and after treatment with the electric modulus, compared well with neat dendrimer data, which confirmed that this relaxation was due to an isolated dendrimer phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1381–1393, 2001  相似文献   

12.
Nanoscale poly(methyl methacrylate) (PMMA) particles were prepared by modified microemulsion polymerization. Different from particles made by traditional microemulsion polymerization, the particles prepared by modified microemulsion polymerization were multichain systems. PMMA samples, whether prepared by the traditional procedure or the modified procedure, had glass-transition temperatures (Tg's) greater than 120 °C and were rich in syndiotactic content (55–61% rr). After the samples were dissolved in CHCl3, there were decreases in the Tg values for the polymers prepared by the traditional procedure and those prepared by the modified process. However, a more evident Tg decrease was observed in the former than in the latter; still, for both, Tg was greater than 120 °C. Polarizing optical microscopy and wide-angle X-ray diffraction indicated that some ordered regions formed in the particles prepared by modified microemulsion polymerization. The addition of a chain-transfer agent resulted in a decrease in both the syndiotacticity and Tg through decreasing polymer molecular weight. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 733–741, 2004  相似文献   

13.
New ether dimer (ED‐Eh) and diester (EHDE) derivatives of α‐(hydroxymethyl)acrylate, each having two 2‐ethylhexyl side chains, and an amine‐linked di(2‐ethylhexyl)acrylate (AL‐Eh), having three 2‐ethylhexyl side chains, were synthesized and (co)polymerized to evaluate the effects of differences in the structures of the monomers on final (co)polymer properties, particularly glass transition temperature, Tg. The free radical polymerizations of these monomers yielded high‐molecular–weight polymers. Cyclopolymer formation of ED‐Eh and AL‐Eh was confirmed by 13C NMR analysis and the cyclization efficiencies were found to be very high (~100%). Copolymers of ED‐Eh, EHDE, and AL‐Eh with methyl methacrylate (MMA) showed significant Tg decreases over poly(methyl methacrylate) (PMMA) due to 2‐ethylhexyl side groups causing “internal” plasticization. Comparison of the Tg's of the copolymers of 2‐ethylhexyl methacrylate, ED‐Eh, EHDE, and AL‐Eh with MMA revealed that the impacts of these monomers on depression of Tg's are identical with respect to the total concentration of the pendent groups. This is consistent with an earlier study involving copolymers of monomers comprising one and two octadecyl side groups with MMA. That is, the magnitude of decrease in Tg's was quantitatively related to the number of the 2‐ethylhexyl pendent groups in the copolymers rather than their placement on the same or randomly incorporated repeat units. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2302–2310, 2010  相似文献   

14.
This report describes a new route to covalently bonded polymer–graphene nanocomposites and the subsequent enhancement in thermal and mechanical properties of the resultant nanocomposites. At first, the graphite is oxidized by the modified Hummers method followed by functionalization with Octadecylamine (ODA). The ODA functionalized graphite oxides are reacted with methacryloyl chloride to incorporate polymerizable ? C?C? functionality at the nanographene platelet surfaces, which were subsequently employed in in situ polymerization of methylmethacrylate to obtain covalently bonded poly(methyl methacrylate) (PMMA)–graphene nanocomposites. The obtained nanocomposites show significant enhancement in thermal and mechanical properties compared with neat PMMA. Thus, even with 0.5 wt % graphene nanosheets, the Tg increased from 119 °C for neat PMMA to 131 °C for PMMA–graphene nanocomposite, and the respective storage modulus increased from 1.29 to 2 GPa. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4262–4267, 2010  相似文献   

15.
The continuous‐multilayer model introduced in our previous study for the Tg behavior of thin films is adapted to nanocomposite systems. Tg enhancement in both thin films and nanocomposites with attractive interfacial interactions can be explained by the same model. Various shapes of nanoparticles are proposed to rationalize the adaptation of the one‐dimensional model for the Tg behavior of thin film to three‐dimensional system such as nanocomposite. The tendency of predicted Tg enhancements in poly(methyl methacrylate) and P2VP nanocomposites with silica particles are qualitatively fit to experimental data in literatures. For the further quantitative fitting, the model is partially modified with the consideration for other factors affecting Tg deviation in nanocomposite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2281–2287, 2009  相似文献   

16.
The effect of nanoparticle surface chemistry on the thermal, mechanical, and magnetic properties of poly(methyl methacrylate) (PMMA) nanocomposites with cobalt ferrite nanofillers was studied by comparing nanofillers coated with oleic acid (OA; which does not covalently bond to the PMMA matrix) and 3‐methacryloxypropyltrimethoxysilane (MPS, which covalently bonds to the PMMA matrix). Thermogravimetric analysis revealed an increase in the thermal degradation temperature of the nanocomposites compared with the neat polymer. The effect of cobalt ferrite nanofiller on the glass transition temperature (Tg) of the nanocomposite was evaluated by differential scanning calorimetry. The Tg value of the material increased when the particles were introduced. Dynamic mechanical analysis indicated an increase in the storage modulus of the nanocomposite because of the presence of nanofiller and a shift in the peak of loss tangent toward higher temperature. Magnetic measurements indicated that both nanocomposites had a small hysteresis loop at 300 K and no hysteresis at 400 K. However, estimates of the nanofiller's rotational relaxation times and measurements of the zero field cooled temperature‐dependent magnetization indicate that the observed lack of hysteresis at 400 K is likely because of particle rotation in the polymer matrix. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

17.
Commercial polydisperse atactic poly(methyl methacrylate) (PMMA) exhibits a decreased glass transition temperature (Tg) when the film thickness is less than ~60 nm, whereas more model atactic PMMA shows an increased Tg in thin films supported on clean silicon wafers. NMR indicates no difference in tacticity, so the divergent thin film behavior appears related to the relative distribution of molecular mass. Extraction of some low molecular weight PMMA components from the commercial sample results in a significant modification of the thin film Tg compared with the initial PMMA fraction. The extracted sample exhibits initially a slight decrease in Tg as the film thickness is reduced below ~60 nm, but then Tg appears to increase for films thinner than 20 nm. These results illustrate the sensitivity of polymer thin film properties to low‐molecular mass components and could explain some of the contradictory reports on the Tg of polymer thin films that exist in the literature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

18.
The dynamic mechanical and thermal properties of natural rubber/poly (methyl methacrylate) blends (NR/PMMA) with and without the addition of graft copolymer (NR‐g‐PMMA) have been investigated. Dynamic mechanical spectroscopy is used to examine the effect of compatibilizer loading on storage modulus (E′), loss modulus (E″) and loss tangent (tan δ) at different temperatures and at different frequencies. The morphology of the blends indicates that the size of the dispersed phase decreased by the addition of a few percent of the graft copolymer followed by a leveling off at higher concentrations. This is an indication of interfacial saturation. Attempts have been made to correlate morphology with dynamic mechanical properties. Various models have been used to fit the experimental viscoelastic results. Differential scanning calorimetry has been used to analyze the glass‐transition temperatures of the blends. The thermal stability of the blends has been analyzed by thermogravimetry. Compatibilized blends are found to be more thermally stable than uncompatibilized blends. Finally the miscibility and mechanical properties of the blends annealed above Tg are evaluated. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 525–536, 2000  相似文献   

19.
The effect of ion‐dipole interaction between lithium cations and oxygen atoms in poly(methyl methacrylate) (PMMA), which leads to the great enhancement of glass transition temperature (Tg), on the linear viscoelastic properties is studied using binary blends of PMMA and lithium trifluoromethanesulfonate (LiCF3SO3). The strong interaction at low temperature leads to the high modulus in the glassy region even near Tg. The interaction becomes weak as increasing the temperature. Consequently, the rheological terminal region is clearly detected without a marked enhancement of steady‐state compliance, although the zero‐shear viscosity increases by the LiCF3SO3 addition. The result indicates that the crosslinking due to the ion‐dipole interaction has a lifetime that decides the longest relaxation time. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2388–2394  相似文献   

20.
The variation of the indentation hardness of a high molecular weight poly(methyl methacrylate) (PMMA) subjected to CO2 and Ar at high pressure was measured in situ. The samples were subjected to gas exposure for 3 h at 40 °C before a conical indenter of an included angle at 105 °, with a fixed load of 0.237 kg, was applied for a loading time of 60 s. The data show that both CO2 and Ar reduce the hardness of PMMA to a comparable extent at low pressures. The hardness of PMMA subjected to Ar indicates a minimum at about 4 MPa and then increases. CO2 produced a monotone decreasing trend in hardness in the pressure range studied, and the glass‐transition temperature (Tg) was achieved at about 6.0 MPa. The change in hardness is attributed to plasticization of the polymer matrix that is more extensive for CO2. The relationship between the change in hardness for this PMMA subjected to high‐pressure CO2, the corresponding change in the Tg, and the associated swelling of the polymer is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3020–3028, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号