首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
手性高分子P–1由(R)-5,5′-二溴-6,6′-二(4-三氟甲基苯基)-2,2′-二正辛氧基-1,1′-联萘(R–M–1)和5,5′-二乙烯基-2,2′-联吡啶(M–2)通过Pd催化的Heck偶合反应合成得到,高分子配合物P-2和P-3由高分子P-1与Eu(TTA)3·2H2O和Gd(TTA)3·2H2O (TTA– = 2-噻吩甲酰三氟丙酮)反应生成。手性高分子P-1能发射强的蓝色荧光,这是由于手性重复单元(R)-6,6′-二(4-三氟甲基苯基)-2,2′-二正辛氧基-1,1′-联萘和单元2,2′-联吡啶通过亚乙烯基桥连形成共轭高分子结构造成的。在不同的激发波长激发下,含Eu(III)的高分子配合物P–2不仅显示高分子荧光,还可显示Eu(III) (5D0→7F2)特征荧光。含Gd(III)的高分子配合物P–3仅发射高分子荧光。基于高分子及含RE(III)的高分子配合物的荧光性质研究发现,共轭高分子并没有把能量转移到Eu(III)或Gd(III) 配合物部分,只发射它自身的荧光,含Eu(III)的高分子配合物P–2发射Eu(III) (5D0→7F2)特征荧光能量主要来源于配阴离子TTA–。  相似文献   

2.
A novel polymer P‐1 is prepared by the reaction of the monomer 5,5′‐divinyl‐2,2′‐bipyridine and Salen‐Zn(II) via Heck cross coupling. Interestingly, P‐1 can further incorporate with Eu(TTA)3·2H2O to generate copolymer P‐2 with two different metal centers. P‐2 exhibits exceptional dual emissive properties which can be tuned by excitation wavelength. For example, an orange fluorescence can be obtained when P‐2 is excited at 430 nm, whereas a red emission with a huge Stoke shift of 57 nm is observed when it is excited at 345 nm. The high wavelength emission can be attributed to Eu(III) (5D07F2), which is lit by an effective photoinduced energy transfer process between P‐1 and the Eu(TTA)3 complex. The properties of P‐2 have led to a better understanding of the energy transfer process between P‐1 and Eu(TTA)3 moieties.  相似文献   

3.
Novel EuIII complexes with bidentate phosphine oxide ligands containing a bipyridine framework, i.e., [3,3′‐bis(diphenylphosphoryl)‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(BIPYPO)]) and [3,3′‐bis(diphenylphosphoryl)‐6,6′‐dimethyl‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(Me‐BIPYPO)]), were synthesized for lanthanide‐based sensor materials having high emission quantum yields and effective chemosensing properties. The emission quantum yields of [Eu(hfa)3(BIPYPO)] and [Eu(hfa)3(Me‐BIPYPO)] were 71 and 73%, respectively. Metal‐ion sensing properties of the EuIII complexes were also studied by measuring the emission spectra of EuIII complexes in the presence of ZnII or CuII ions. The metal‐ion sensing and the photophysical properties of luminescent EuIII complexes with a bidentate phosphine oxide containing 2,2′‐bipyridine framework are demonstrated for the first time.  相似文献   

4.
Poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3a ), poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐4,4′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3b ), and poly{bis(2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3c ) were synthesized by the Suzuki coupling reaction. The alternating structure of the copolymers was confirmed by 1H and 13C NMR and elemental analysis. The polymers showed, by ultraviolet–visible, the π–π* absorption of the polymer backbone (320–380 nm) and at a lower energy attributed to the d–π* metal‐to‐ligand charge‐transfer absorption (450 nm for linear 3a and 480 nm for angular 3b ). The polymers were characterized by a monomodal molecular weight distribution. The degree of polymerization was approximately 8 for polymer 3b and 28 for polymer 3d . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2911–2919, 2004  相似文献   

5.
The β‐diketonate‐based achiral polymer P‐1 could be synthesized by the polymerization of 3,7‐dibromo‐2,8‐dimethoxy‐5,5‐dioctyl‐5H‐dibenzo[b,d]silole ( M1 ) with (Z)?1,3‐bis(4‐ethynylphenyl)?3‐hydroxyprop‐en‐1‐one ( M2 ) via typical Sonogashira coupling reaction. The β‐diketonate unit in the main chain backbone of P‐1 can further coordinate with Eu(TTA)x [TTA? = 4,4,4‐trifluoro‐1‐(thiophen‐2‐yl)butane‐1,3‐dionate anion, X = 1, 2, 3] to afford corresponding Eu(III)‐containing polymer complexes. The resulting achiral polymer complex P‐2 (X = 2) can exhibit strong circular dichroism (CD) response toward both N‐Boc‐l and d‐ proline enantiomers. The CD signal was preliminarily attributed to coordination induction between chiral N‐Boc‐proline and the Eu(III) complex moiety. The linear regression analysis of CD sensing shows a good agreement between the magnitude of molar ellipticity and concentration of chiral N‐Boc‐l or d‐ proline, which indicates this kind Eu(III)‐containing achiral polymer complex can be used as a chiral probe for enantioselective recognition of N‐Boc‐l or d‐ proline enantiomers based on Cotton effect of CD spectra. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3080–3086  相似文献   

6.
Three chiral polymers P‐1 , P‐2 , and P‐3 could be obtained by the polymerization of (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2, 2′‐binaphthol (R‐M‐1) , (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2,2′‐bisoctoxy‐1,1′‐binaphthyl ( R‐M‐2 ), and (R)‐6,6′‐dibutyl‐3,3′‐diiodo‐2,2′‐bis (diethylaminoethoxy)‐1,1′‐binaphthyl ( R‐M‐3 ) with 4,7‐diethynyl‐benzo[2,1,3]‐thiadiazole ( M‐1) via Pd‐catalyzed Sonogashira reaction, respectively. P‐1 , P‐2 , and P‐3 can show pale red, blue–green, and orange fluorescence. The responsive optical properties of these polymers on various metal ions were investigated by fluorescence spectra. Compared with other cations, such as Co2+, Ni2+, Ag+, Cd2+, Cu2+, and Zn2+, Hg2+ can exhibit the most pronounced fluorescence response of these polymers. P‐1 and P‐2 show obvious fluorescence quenching effect upon addition of Hg2+, on the contrary, P‐3 shows fluorescence enhancement. Three polymer‐based fluorescent sensors also show excellent fluorescence response for Hg2+ detection without interference from other metal ions. The results indicate that these kinds of tunable chiral polybinaphthyls can be used as fluorescence sensors for Hg2+ detection. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 997–1006, 2010  相似文献   

7.
5‐Ethynyl‐2,2′‐bipyridine ( 1 ; bpyC≡CH) polymerized in the presence of catalytic amounts of [RhF(COD)(PPh3)] or [Rh(μ‐OH)(COD)]2 (COD = 1,5‐cyclooctadiene) in 74–91% yields. In contrast, [Rh(μ‐X)(NBD)]2 (X = Cl or OMe; NBD = norbornadiene) did not catalyze the polymerization of 1 or gave low yields of the polymer. The obtained polymer, poly(5‐ethynyl‐2,2′‐bipyridine) [ 2 ; (bpyC?CH)n], was highly stereoregular with a predominant cis–transoidal geometry. Random copolyacetylenes containing the 2,2′‐bipyridyl group with improved solubility in organic solvents were obtained by the treatment of a mixture of 1 and phenylacetylene ( 3 ) or 1‐ethynyl‐4‐n‐pentyl‐benzene with catalytic amounts of [RhF(COD)(PPh3)]. A block copolymer of 1 and 3 was prepared by the addition of 1 to a poly(phenylacetylene) containing a living end. The reaction of 2 with [Mo(CO)6] produced an insoluble polymer containing [Mo(CO)4(bpy)] groups, whereas with [RuCl2(bpy)2] or [Ru(bpy)2(CH3COCH3)2](CF3SO3)2, it gave soluble metal–polymer complexes containing [Ru(bpy)3]2+ groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:3167–3177, 2005  相似文献   

8.
New chiral binaphthyl‐containing polyfluorene (PF) derivatives, PFOH , PFMOM , and PFP , bearing different binaphthyl units ((S)‐2,2′‐bis(methoxymethoxy)‐1,1′‐binaphthyl for PFMOM , (S)‐1,1′‐binaphthyl‐2,2′‐diol for PFOH , and (S)‐2,2′‐bis(diphenylphosphinyl)‐1,1′‐binaphthyl for PFP ) in the backbone have been designed and synthesized through Pd‐catalyzed Suzuki polycondensation. Their properties have been investigated in detail by 1H NMR, 13C NMR, TGA, DSC, UV–vis, photoluminescence (in solutions, in thin films before and after annealing), and circular dichroism (CD) spectroscopic methods compared with poly(9,9‐dihexylfluorene‐2,7‐diyl) ( PF ). The resulting copolymers possessed excellent solubility in organic solvents and emitted strong blue light. The phosphine oxide‐containing copolymers PFP and PFMOM exhibited higher quantum yields and better thermal spectral stability in comparison with PF . All the copolymers exhibited obviously the linearly polarized photoluminescent properties both in solutions and in solid states. High emission polarization ratios (RPL) of PFP were observed with no obvious decrease upon thermal annealing. In addition, investigation of the CD spectroscopic properties of these copolymers in THF solutions indicated that the chirality of the binaphthyls could be transferred to the whole PF backbone. All these results demonstrated that introduction of the chiral binaphthyls, particularly BINAPO, into the backbone could effectively improve the performances of the copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Three novel lanthanide complexes [Er (3,4‐DMBA)3(5,5′‐DM‐2,2′‐bipy)(H2O)] ( 1 ); [Tb2 (3,4‐DMBA)6(5,5′‐DM‐2,2′‐bipy)2(H2O)] ( 2 ); [Eu (3,4‐DMBA)3(3,4‐DMHBA)(5,5′‐DM‐2,2′‐bipy)]2 ( 3 ) (3,4‐DMHBA = 3,4‐dimethylbenzoic acid, 5,5′‐DM‐2,2′‐bipy =5,5′‐dimethyl‐2,2′‐bipyridine) were successfully synthesized via conventional solution method at room temperature and structurally characterized by single crystal diffraction. The structures of the complexes 1 – 3 were confirmed on the basis of elemental analysis, coordination titration analysis, IR and XRD. The molecular structures of complexes 2 and 3 are very particular: complex 2 has two same central metal ions but each metal ion has different coordination environment; in structure of the complex 3 , there are eight carboxylic acid ligands coordinated to the central metal ions, which have rarely been reported previously. The thermal decomposition mechanism of complexes 1 – 3 were investigated by the technology of simultaneous TG/DSC‐FTIR. The heat capacities of the complexes were recorded by means of DSC over the range of from 253.15 K to 345.15 K. The thermodynamic parameters, the smoothed values of heat capacities, enthalpy (HT‐H298.15K) and entropy (ST‐S298.15K) were also calculated. The bacteriostatic activities of the complexes were evaluated against Staphylococcus aureus, Escherichia coli and Candida albicans. What's more, the luminescence properties of complexes 2 and 3 were discussed, and their fluorescence lifetimes as well as the quantum yield of the Eu (III) were measured. To elucidate the energy transfer process of complexes 2 and 3, the energy levels of the relevant electronic states have been estimated.  相似文献   

10.
Four new lanthanide complexes [Ln(4‐EBA)3(5,5′‐DM‐2,2′‐bipy)]2·2C2H5OH (Ln = Ho ( 1 ), Tb ( 2 ), Er ( 3 )); [Ln(4‐EBA)3(4‐EBAH)(5,5′‐DM‐2,2′‐bipy)]2 (Ln = Eu( 4 ); 4‐EBA =4‐ethylbenzoate; 5,5′‐DM‐2,2′‐bipy =5,5′‐dimethy‐2,2′‐bipyridine; 4‐EBAH = 4‐ethylbenzoic acid) have been synthesized and characterized by elemental analysis and IR spectra. The single crystal results reveal that complexes 1 – 3 are isostructural. It is worth noting that the mole ratios of the carboxylate ligands and neutral ligands is 4:1 in complex 4 , which is different from the former and has been rarely reported. Nevertheless, all complexes are connected to form 1D chain by π ···π wake staking interactions. Additionally, the complexes 2 (Tb(III)) and 4 (Eu(III)) exhibit characteristic luminescent properties, indicating that ligands can be used as sensitizing chromophore in these systems. The thermal decomposition mechanism of the complexes has been investigated by TG/DSC–FTIR technology. Stacked plots of the FTIR spectra of the evolved gases show complexes broken down into H2O, CO2, and other gaseous molecules as well as the gaseous organic fragments. The studies on bacteriostatic activities of complexes show that four complexes have good bacteriostatic activities against Candida albicans but no bacteriostatic activity on Escherichia coli , and Staphylococcus aureus . Additionally, the complexes 1 to 3 have better bacteriostatic activities on Candida albicans than complex 4 .  相似文献   

11.
New chiral binaphthyl‐based polyarylenes [(S)‐ 3a and (S)‐ 3b ] with appendant Fréchet‐type poly(aryl ether) dendrons (first generation and second generation) were synthesized with Suzuki polycondensation from chiral (S)‐6,6′‐dibromo‐2,2′‐didendron‐substituted 1,1′‐binaphthyl derivatives and p‐phenylene diboronic acid. The polymers were studied with circular dichroism, fluorescence, and ultraviolet–visible spectra. Laser light scattering measurements of (S)‐ 3a and (S)‐ 3b showed that their weight‐average molecular weights were 2.39 × 105 and 1.09 × 104, respectively. The specific optical rotation [α]D was ?59.6 for (S)‐ 3a and ?62.7 for (S)‐ 3b . These dendronized conjugated polymers exhibited good thermal stability. The glass‐transition temperatures and the initial decomposition temperatures were 187.5 and 265.3 °C for (S)‐ 3a and 173.8 and 308.9 °C for (S)‐ 3b , respectively. (S)‐ 3a and (S)‐ 3b had high fluorescence quantum efficiencies, 87 and 91%, respectively, in tetrahydrofuran. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1167–1172, 2002  相似文献   

12.
Two novel chiral ruthenium(II) complexes, Δ‐[Ru(bpy)2(dmppd)]2+ and Λ‐[Ru(bpy)2(dmppd)]2+ (dmppd = 10,12‐dimethylpteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, bpy = 2,2′‐bipyridine), were synthesized and characterized by elemental analysis, 1H‐NMR and ES‐MS. The DNA‐binding behaviors of both complexes were studied by UV/VIS absorption titration, competitive binding experiments, viscosity measurements, thermal DNA denaturation, and circular‐dichroism spectra. The results indicate that both chiral complexes bind to calf‐thymus DNA in an intercalative mode, and the Δ enantiomer shows larger DNA affinity than the Λ enantiomer does. Theoretical‐calculation studies for the DNA‐binding behaviors of these complexes were carried out by the density‐functional‐theory method. The mechanism involved in the regulating and controlling of the DNA‐binding abilities of the complexes was further explored by the comparative studies of [Ru(bpy)2(dmppd)]2+ and of its parent complex [Ru(bpy)2(ppd)]2+ (ppd = pteridino[6,7‐f] [1,10]phenanthroline‐11,13 (10H,12H)‐dione).  相似文献   

13.
The synthesis of a number of new 2,2′‐bipyridine ligands functionalized with bulky amino side groups is reported. Three homoleptic polypyridyl ruthenium (II) complexes, [Ru(L)3]2+ 2(PF6?), where L is 4,4′‐dioctylaminomethyl‐2,2′‐bipyridine (Ru4a), 4,4′‐didodecylaminomethyl‐2,2′‐bipyridine (Ru4b) and 4,4′‐dioctadodecylaminomethyl‐2,2′‐bipyridine (Ru4c), have been synthesized. These compounds were characterized and their photophysical properties examined. The electronic spectra of three complexes show pyridyl π → π* transitions in the UV region and metal‐to‐ligand charge transfer bands in the visible region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A new (S)‐binaphthalene‐based polymer ( P ‐ 1 ) was synthesized by the polymerization of 5,5′‐((2,5‐dibutoxy‐1,4‐phenylene)bis(ethyne‐2,1‐diyl))bis(2‐hydroxy‐3‐(piperidin‐1‐ylmethyl) benzaldehyde ( M ‐ 1 ) with (S)‐2,2′‐dimethoxy‐(1,1′‐binaphthalene)‐3,3′‐diamine ( M ‐ 2 ) through the formation of a Schiff base; the corresponding chiral polymer ( P ‐ 2 ) could be obtained by the reduction of polymer P ‐ 1 with NaBH4. Chiral polymer P ‐ 1 exhibited a remarkable “turn‐on” fluorescence‐enhancement response towards (D )‐phenylalaninol and excellent enantioselective recognition behavior with enantiomeric fluorescence difference ratios (ef) as high as 8.99. More importantly, chiral polymer P ‐ 1 displays a bright blue fluorescence color change upon the addition of (D )‐phenylalaninol under a commercially available UV lamp, which can be clearly observed by the naked eye. On the contrary, chiral polymer P ‐ 2 showed weaker enantioselective fluorescence ability towards the enantiomers of phenylalaninol.  相似文献   

15.
[Eu(pda)2]? and [Eu(bda)2]? (pda=1,10‐phenanthroline‐2, 9‐dicarboxylic acid; bda=2,2′ bipyridine 5,5′‐dicarboxylic acid) have an achiral D2d structure in crystals. These complexes exhibit circularly polarized luminescence (CPL) in water containing chiral amino acids. In this work, induced CPL of [Eu(pda)2]? and [Eu(bda)2]? in water solutions containing a mixture of d ‐ and l ‐ amino acids were examined. Plots of glum values of the induced CPL as a function of mol‐fraction of l ‐ and d ‐ arginine reveal that [Eu(pda)2]? favors homo‐association ([Eu(pda)2]?‐(l ‐arginine)2 or [Eu(pda)2]?‐(d ‐arginine)2) over hetero‐association {[Eu(pda)2]?‐(l ‐arginine)?(d ‐arginine)}. This suggests that association of an arginine molecule induces a structural change in [Eu(pda)2]? to promote chiral selective association to another arginine, i.e., homo‐allosteric association. On the other hand, the system of [Eu(pda)2]? with histidine favors hetero‐allosteric association over homo‐association. No allosteric effect is recognized in CPL from [Eu(bda)2]?.  相似文献   

16.
A novel hybrid‐type chiral binaphthyl‐based polyarylene derivative with polyhedral oligomeric silsesquioxanes (POSS) units 2a was prepared by Suzuki–Miyaura coupling polymerization from a chiral (R)‐6,6′‐dibromo‐2,2′‐diPOSS‐substituted 1,1′‐binaphthyl derivative 1a and p‐biphenylene diboronic acid. As a reference, a binaphthyl‐based polyarylene derivative without POSS unit 2b was also prepared. The obtained polymers were studied with thermogravimetric analysis, optical rotations, circular dichroism (CD), ultraviolet‐visible, and photoluminescence (PL) spectra. Gel permeation chromatography measurements of 2a and 2b showed that their number‐average molecular weights were 13,300 and 16,500, respectively. The thermal stability of POSS‐modified polymer 2a (temperature of 10% weight loss; T10 = 380 °C) was extremely high compared with that of polymer without POSS unit 2b (T10 = 335 °C) due to the siliceous bulky POSS segments on the side chains. The specific optical rotation [α]D was ?66.7° (c 0.06, CHCl3) for 2a and ?62.3° (c 0.06, CHCl3) for 2b . The CD spectra showed that these two polymers had very similar and strong Cotton effects. Film polymer 2a showed almost the same PL spectrum as that in dilute CHCl3 solution, indicating that bulky POSS units strongly suppressed intermolecular aggregation of the π‐conjugated polymer backbone. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6035–6040, 2008  相似文献   

17.
Structural characterisation of a number of hydrated solids containing chiral, kinetically inert [Co(A–A)3]3+ cations (A–A = 2,2′‐bipyridine, 1,10‐phenanthroline, 4,4′‐dimethyl‐2,2′‐bipyridine) and chiral, kinetically labile [Ln(dipic)3]3– anions (Ln = La, Eu, Tb, Ho, Er, Lu, Y, though not for all cobalt cations; dipic = dipicolinate = pyridine‐2,6‐dicarboxylate) show a remarkable range of associations between the lattice components, though all are racemic arrays. Analysis of the structures in terms of short interatomic contacts between the components shows that, whereas numerous contacts of the heteroaromatic ligands do occur, very few define an arrangement which could be truly termed “π‐stacking” where the rings are closely parallel and atom overlaps in projection are substantial. Water is important in the highly hydrated lattice structures, not only because of hydrogen‐bonding interactions with itself and carboxylate‐O atoms but also because of its interactions with the aromatic units. The family [Co(bipy)3][Ln(dipic)3]·~13H2O are essentially isomorphous for the full range of Ln plus Y (triclinic, P\bar{1} , a = 12.3, b = 14.3, c = 16.5 Å, α = 94, β = 94, γ = 108 ?, Z = 2). Among the heavier lanthanides, the potential symmetry of the anion/cation combination is realised in the trigonal space group P\bar{3} , both species lying together as an ion‐pair, disposed on the trigonal axis for [Co(phen)3][Ln(dipic)3]·22H2O (Ln = Eu, Er; a = 15.2, c = 16.8 Å, Z = 2).  相似文献   

18.
Mononuclear palladium‐hydroxo complexes of the type [Pd(N–N)(C6F5)(OH)][(N–N) = 2,2′‐bipyridine (bipy), 4,4′‐dimethyl‐2,2′‐bipyridine (Me2bipy), 1,10‐phenantroline (phen) or N,N,N′,N′‐tetramethylethylenediamine (tmeda) react with phenols ArOH in tetrahydrofuran giving the corresponding aryloxo complexes [Pd(N–N)(C6F5)(OAr)]. Elemental analyses and spectroscopic (IR, 1H and 19F) methods have been used to characterize the new complexes. The X‐ray crystal structure of [Pd(tmeda)(C6F5)(OC6H4NO2p)] has been determined. In the crystal packing the planes defined by two C6H4 rings show a parallel orientation. There are also intermolecular C–H···F and C‐H···O hydrogen bonds.  相似文献   

19.
A series of lanthanide complexes with general formula [Ln(NTA)3X] were prapared [Ln = Y ( a ), Er ( b ), Eu ( c ), NTA = naphthoyltrifluoroacetone, X = H2O ( 1 ), phen = phenanthroline ( 2 ), bpyO1 = 2, 2′‐bipyridine N‐oxide ( 3 ), and bpyO2 = 2, 2′‐bipyridine‐N,N′‐dioxide ( 4 )]. The crystal structures of [Eu(NTA)3bpyO2] ( 4b ), [Er(NTA)3bpyO1] ( 3c ), and [Er(NTA)3phen] ( 2c ) were determined. X‐ray crystallographic analysis reveals that the complexes are of mononuclear structure with three NTA and one ancillary ligand. The photoluminescence spectra of 3c and 4b exhibit strong characteristic emissions arising from Eu3+ central ion due to the efficient sensitization of bpyO1 and bpyO2, respectively.  相似文献   

20.
Seven new oligomeric complexes of 4,4′‐bipyridine; 3,3′‐bipyridine; benzene‐1,4‐diamine; benzene‐1,3‐diamine; benzene‐1,2‐diamine; and benzidine with rhodium tetraacetate, as well as 4,4′‐bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid‐state nuclear magnetic resonance spectroscopy, 13C and 15N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4′‐bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2′‐bipyridine with rhodium tetraacetate exhibiting axial–equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes. The 15N CPMAS NMR spectra of all new complexes consist of one narrow signal, indicating regular uniform structures. Benzidine forms a heterogeneous material, probably containing linear oligomers and products of further reactions. The complexes were characterized by the parameter complexation shift Δδ (Δδ = δcomplex ? δligand). This parameter ranged from around ?40 to ?90 ppm in the case of heteroaromatic ligands, from around ?12 to ?22 ppm for diamines and from ?16 to ?31 ppm for the complexes of molybdenum tetracarboxylates with 4,4′‐bipyridine. The experimental results have been supported by a density functional theory computation of 15N NMR chemical shifts and complexation shifts at the non‐relativistic Becke, three‐parameter, Perdew‐Wang 91/[6‐311++G(2d,p), Stuttgart] and GGA–PBE/QZ4P levels of theory and at the relativistic scalar and spin‐orbit zeroth order regular approximation/GGA–PBE/QZ4P level of theory. Nucleus‐independent chemical shifts have been calculated for the selected compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号