首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a noniterative linear least-squares error method developed by Yang and Chen for solving the inverse problems is re-examined. For the method, condition for the existence of a unique solution and the error bound of the resulting inverse solution considering the measurement errors are derived. Though the method was shown to be able to give the unique inverse solution at only one iteration in the literature, however, it is pointed out with two examples that for some inverse problems the method is practically not applicable, once the unavoidable measurement errors are included. The reason behind this is that the so-called reverse matrix for these inverse problems has a huge number of 1-norm, thus, magnifying a small measurement error to an extent that is unacceptable for the resulting inverse solution in a practical sense. In other words, the method fails to yield a reasonable solution whenever applied to an ill-conditioned inverse problem. In such a case, two approaches are recommended for decreasing the very high condition number: (i) by increasing the number of measurements or taking measurements as close as possible to the location at which the to-be-estimated unknown condition is applied, and (ii) by using the singular value decomposition (SVD).  相似文献   

2.
The article presents a quasi-one-dimensional method for solving the inverse problem of electromagnetic sounding. The quasi-one-dimensional method is an iteration process that in each iteration solves a parametric one-dimensional inverse problem and a two-dimensional direct problem. The solution results of these problems are applied to update the input values for the parametric one-dimensional inverse problem in the next iteration. The method has been implemented for a two-dimensional inverse problem of magnetotelluric sounding in a quasi-layered medium.  相似文献   

3.
In this paper, an inverse complementarity power iteration method (ICPIM) for solving eigenvalue complementarity problems (EiCPs) is proposed. Previously, the complementarity power iteration method (CPIM) for solving EiCPs was designed based on the projection onto the convex cone K. In the new algorithm, a strongly monotone linear complementarity problem over the convex cone K is needed to be solved at each iteration. It is shown that, for the symmetric EiCPs, the CPIM can be interpreted as the well‐known conditional gradient method, which requires only linear optimization steps over a well‐suited domain. Moreover, the ICPIM is closely related to the successive quadratic programming (SQP) via renormalization of iterates. The global convergence of these two algorithms is established by defining two nonnegative merit functions with zero global minimum on the solution set of the symmetric EiCP. Finally, some numerical simulations are included to evaluate the efficiency of the proposed algorithms.  相似文献   

4.
A new analytical method called He’s variational iteration method (VIM) is introduced to be applied to solve nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equations and free vibration of a nonlinear system having combined linear and nonlinear springs in series in this article. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers can be identified optimally via the variational theory. The results are compared with the results of the homotopy analysis method and also with the exact solution. He’s Variational iteration method in this problem functions so better than the homotopy analysis method and exact solutions one of them in per section.  相似文献   

5.
This paper presents numerical solutions for the space‐ and time‐fractional Korteweg–de Vries equation (KdV for short) using the variational iteration method. The space‐ and time‐fractional derivatives are described in the Caputo sense. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers in the functionals can be identified optimally via variational theory. The iteration method, which produces the solutions in terms of convergent series with easily computable components, requiring no linearization or small perturbation. The numerical results show that the approach is easy to implement and accurate when applied to space‐ and time‐fractional KdV equations. The method introduces a promising tool for solving many space–time fractional partial differential equations. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

6.
Electrical impedance tomography is an inverse problem of elliptic differential equations. Numerical methods based on combining generalized difference method and Levenberg–Marquardt iteration on a planar domain are proposed. Positive semi-definiteness and existence of solution of the generalized difference scheme are proved. Element geometry matrix is introduced to shortcut calculation and standardize computer program. A series of numerical experiments verify the reliability of its mathematical model and the feasibility of the algorithm. A class of electrical current patterns is proposed to minimize the number of direct problems to be solved in each iteration. These methods have been applied successfully in practical simulation of electrical impedance tomography.  相似文献   

7.
Many applications in science and engineering lead to models that require solving large‐scale fixed point problems, or equivalently, systems of nonlinear equations. Several successful techniques for handling such problems are based on quasi‐Newton methods that implicitly update the approximate Jacobian or inverse Jacobian to satisfy a certain secant condition. We present two classes of multisecant methods which allow to take into account a variable number of secant equations at each iteration. The first is the Broyden‐like class, of which Broyden's family is a subclass, and Anderson mixing is a particular member. The second class is that of the nonlinear Eirola–Nevanlinna‐type methods. This work was motivated by a problem in electronic structure calculations, whereby a fixed point iteration, known as the self‐consistent field (SCF) iteration, is accelerated by various strategies termed ‘mixing’. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
电阻抗成像是一类椭圆方程反问题,本文在三维区域上对其进行数值模拟和分析.对于椭圆方程Neumann边值正问题,本文提出了四面体单元上的一类对称体积元格式,并证明了格式的半正定性及解的存在性;引入单元形状矩阵的概念,简化了系数矩阵的计算;提出了对电阻率进行拼接逼近的方法来降低反问题求解规模,使之与正问题的求解规模相匹配;导出了误差泛函的Jacobi矩阵的计算公式,利用体积元格式的对称性和特殊的电流基向量,将每次迭代中需要求解的正问题的个数降到最低.一系列数值实验的结果验证了数学模型的可靠性和算法的可行性.本文所提出的这些方法,已成功应用于三维电阻抗成像的实际数值模拟.  相似文献   

9.
An a posteriori error estimator is presented for a subspace implementation of preconditioned inverse iteration, which derives from the well‐known inverse iteration in such a way that the associated system of linear equations is solved approximately by using a preconditioner. The error estimator is integrated in an adaptive multigrid algorithm to compute approximations of a modest number of the smallest eigenvalues together with the eigenfunctions of an elliptic differential operator. Error estimation is applied both within the actual finite element space (in order to estimate the iteration error) as well as in its hierarchical refinement of higher‐order elements (to estimate the discretization error) which gives rise to a balanced reduction of the iteration error and of the discretization error in the adaptive multigrid algorithm. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Newton iteration method can be used to find the minimal non‐negative solution of a certain class of non‐symmetric algebraic Riccati equations. However, a serious bottleneck exists in efficiency and storage for the implementation of the Newton iteration method, which comes from the use of some direct methods in exactly solving the involved Sylvester equations. In this paper, instead of direct methods, we apply a fast doubling iteration scheme to inexactly solve the Sylvester equations. Hence, a class of inexact Newton iteration methods that uses the Newton iteration method as the outer iteration and the doubling iteration scheme as the inner iteration is obtained. The corresponding procedure is precisely described and two practical methods of monotone convergence are algorithmically presented. In addition, the convergence property of these new methods is studied and numerical results are given to show their feasibility and effectiveness for solving the non‐symmetric algebraic Riccati equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The discretization of eigenvalue problems for partial differential operators is a major source of matrix eigenvalue problems having very large dimensions, but only some of the smallest eigenvalues together with the eigenvectors are to be determined. Preconditioned inverse iteration (a “matrix-free” method) derives from the well-known inverse iteration procedure in such a way that the associated system of linear equations is solved approximately by using a (multigrid) preconditioner. A new convergence analysis for preconditioned inverse iteration is presented. The preconditioner is assumed to satisfy some bound for the spectral radius of the error propagation matrix resulting in a simple geometric setup. In this first part the case of poorest convergence depending on the choice of the preconditioner is analyzed. In the second part the dependence on all initial vectors having a fixed Rayleigh quotient is considered. The given theory provides sharp convergence estimates for the eigenvalue approximations showing that multigrid eigenvalue/vector computations can be done with comparable efficiency as known from multigrid methods for boundary value problems.  相似文献   

12.
Some draining or coating fluid‐flow problems and problems concerning the flow of thin films of viscous fluid with a free surface can be described by third‐order ordinary differential equations (ODEs). In this paper, we solve the boundary value problems of such equations by sinc discretization and prove that the discrete solutions converge to the true solutions of the ODEs exponentially. The discrete solution is determined by a linear system with the coefficient matrix being a combination of Toeplitz and diagonal matrices. The system can be effectively solved by Krylov subspace iteration methods, such as GMRES, preconditioned by banded matrices. We demonstrate that the eigenvalues of the preconditioned matrix are uniformly bounded within a rectangle on the complex plane independent of the size of the linear system. Numerical examples are given to illustrate the effective performance of our method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Convergence results are provided for inexact two‐sided inverse and Rayleigh quotient iteration, which extend the previously established results to the generalized non‐Hermitian eigenproblem and inexact solves with a decreasing solve tolerance. Moreover, the simultaneous solution of the forward and adjoint problem arising in two‐sided methods is considered, and the successful tuning strategy for preconditioners is extended to two‐sided methods, creating a novel way of preconditioning two‐sided algorithms. Furthermore, it is shown that inexact two‐sided Rayleigh quotient iteration and the inexact two‐sided Jacobi‐Davidson method (without subspace expansion) applied to the generalized preconditioned eigenvalue problem are equivalent when a certain number of steps of a Petrov–Galerkin–Krylov method is used and when this specific tuning strategy is applied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Inverse problems for identification of the four memory kernels in one-dimensional linear thermoviscoelasticity are reduced to a system of non-linear Volterra integral equations using Fourier's method for solving the direct problem. To this system of equations the contraction principle in weighted norms is applied. In this way global in time existence of a solution to the inverse problems is proved and stability estimates for it are derived. In analogous way inverse problems for the memory kernels in linear poroviscoelasticity can be handled. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

15.
We present an improved iteration regularization method for solving linear inverse problems. The algorithm considered here is detailedly given and proved that the computational costs for the proposed method are nearly the same as the Landweber iteration method, yet the number of iteration steps by the present method is even less. Meanwhile, we obtain the optimum asymptotic convergence order of the regularized solution by choosing a posterior regularization parameter based on Morozov’s discrepancy principle, and the present method is applied to the identification of the multi-source dynamic loads on a surface of the plate. Numerical simulations of two examples demonstrate the effectiveness and robustness of the present method.  相似文献   

16.
In this paper, the reproducing kernel Hilbert space method (RKHSM) is applied to neutral functional–differential equations with proportional delays. Its approximate solution is obtained by truncating the n‐term of exact solution. Some examples are displayed to demonstrate the computation efficiency of the method. We also compare the performance of the method with a particular Runge–Kutta method, a one‐leg θ‐method and variational iteration method. Experiment dates indicate that the RKHSM is an accurate and efficient method to solve neutral functional–differential equations with proportional delays. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this article, we implement a new analytical technique; He’s variational iteration method for solving the coupled KdV and Boussinesq-like equations. In this method, first general Lagrange multipliers are introduced to construct correction functional for the problems. The multipliers in the functional can be identified optimally via the variational theory. Next the components of obtained iteration formulae defined by partial sum of other sequence, specially constructed according to Adomian’s decomposition method (ADM). Also according to ADM we used a partial sum of Adomian polynomials instead of nonlinear terms in iteration formulae. The initial approximations can be freely chosen with possible unknown constants, which can be determined by imposing the initial conditions. The results reveal that the proposed method is very effective and can be applied for other nonlinear problems.  相似文献   

18.
In this paper, a new iteration algorithm to solve the coefficient inverse problem is described by using a "basic function" which is specially defined and the idea of regularization. The method is simple and clear.The main advantage of the algorithm is that its computing cost is less than other current algorithms, such as PST and Purlerbalion Methods. Since it has uniform scheme, on the other hand, the method can be easily exleded to other kinds of inverse problems of different leal equations, multidimensional inverse problem and multiparameler inverse problems, etc.  相似文献   

19.
黄翔 《运筹学学报》2005,9(4):74-80
近年来,决定椭圆型方程系数反问题在地磁、地球物理、冶金和生物等实际问题上有着广泛的应用.本文讨论了二维的决定椭圆型方程系数反问题的数值求解方法.由误差平方和最小原则,这个反问题可化为一个变分问题,并进一步离散化为一个最优化问题,其目标函数依赖于要决定的方程系数.本文着重考察非线性共轭梯度法在此最优化问题数值计算中的表现,并与拟牛顿法作为对比.为了提高算法的效率我们适当选择加快收敛速度的预处理矩阵.同时还考察了线搜索方法的不同对优化算法的影响.数值实验的结果表明,非线性共轭梯度法在这类大规模优化问题中相对于拟牛顿法更有效.  相似文献   

20.
The Chebyshev accelerated preconditioned modified Hermitian and skew‐Hermitian splitting (CAPMHSS) iteration method is presented for solving the linear systems of equations, which have two‐by‐two block coefficient matrices. We derive an iteration error bound to show that the new method is convergent as long as the eigenvalue bounds are not underestimated. Even when the spectral information is lacking, the CAPMHSS iteration method could be considered as an exponentially converging iterative scheme for certain choices of the method parameters. In this case, the convergence rate is independent of the parameters. Besides, the linear subsystems in each iteration can be solved inexactly, which leads to the inexact CAPMHSS iteration method. The iteration error bound of the inexact method is derived also. We discuss in detail the implementation of CAPMHSS for solving two models arising from the Galerkin finite‐element discretizations of distributed control problems and complex symmetric linear systems. The numerical results show the robustness and the efficiency of the new methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号