首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we have reported the influence of alcohol as a casting solution on the structure and the gas permeability of asymmetric polyimide membranes made by dry–wet phase inversion. The apparent skin layer thickness of the asymmetric membrane decreased with an increase in molecular weight of the alcohol, and the thicknesses of the membranes made from methanol, ethanol, propanol, and butanol were 250, 120, 61, and 31 nm, respectively. We found that χ12 as an interaction parameter of solvent–nonsolvent had a significant influence on the phase inversion occurring in the coagulant medium. On the other hand, the gas permeance and the gas selectivity in the asymmetric membranes increased with the increasing molecular weight of the alcohol. We believe that a more packed structure formed in the asymmetric polyimide membrane with a thinner surface skin layer is also responsible for the thickness‐dependence of the gas selectivity obtained in this study. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2739–2746, 2007  相似文献   

2.
In this study, we report the gas permeance and selectivity of the asymmetric polyimide membrane prepared by plasma‐based ion implantation (PBII). The asymmetric polyimide membranes were prepared using a dry–wet phase inversion process, and the surface skin layer on the membrane was implantated by He ions at 2.5 keV. The asymmetric membranes treated by PBII were measured using a high vacuum apparatus with a Baratron absolute pressure gauge at 76 cmHg and 35°C. The (O2/N2) and (CO2/CH4) selectivities in the He+‐implanted asymmetric membrane at 60 sec resulted in 1.5 and 1.8 time increases, respectively, when compared to those of the asymmetric membrane before PBII. On the other hand, the O2 and CO2 permeances in the asymmetric membrane after PBII decreased with an increase in the He+ treatment time. In this paper, we addressed, for the first time, the gas permeation behavior of the asymmetric polyimide membranes prepared by PBII. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, the water permeability, the rejection property of sucrose and glucose, the fouling property of humic acid as the foulant for a novel porous fluorinated polyimide membrane made by combining the ion irradiation and plasma treatment have been reported. First, an asymmetric polyimide membrane with a defect‐free and thin skin layer was prepared, then ions on the skin layer were irradiated and the ion‐irradiated layer was treated by plasma to form nanopores in the layer. The asymmetric polyimide membranes with a defect‐free skin layer were irradiated with 50 keV He+ at 1 × 1015 ions/cm2, and the irradiated polyimide surfaces were treated by Ar glow discharge. The porous polyimide membrane showed a high water flux and excellent rejection properties and fouling resistance when compared with NTR‐7250, which is commercially available. These findings indicated that the pore size formed on the porous polyimide membrane was effectively controlled by the plasma treatment time and the skin layer thickness. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, we focused on effect of the molecular weight of polyimide on the gas selectivity of the asymmetric membrane with an oriented surface skin layer prepared at different shear stresses. Asymmetric polyimide membranes, which have a defect‐free surface skin layer supported by a porous substructure, were prepared by a dry/wet phase inversion process. The structures of the asymmetric polyimides consisted of a thin skin layer and a porous substructure characterized by the presence of finger‐voids. The gas selectivities of the asymmetric polyimide membranes increased with an increase in the shear rate or a decrease in the molecular weight, indicating that the oriented polyimide structure in the surface skin layer provided a high size and shape discrimination between the gas molecules. The selectivity values of (O2/N2) and (CO2/CH4) in the asymmetric polyimide membrane prepared from the 7.2 × 104 molecular weight material at 1000 sec?1 shear rate were 12 and 143, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Two types of polyimide membranes; one crosslinkable and the other noncrosslinkable using ultraviolet light irradiation (UV irradiation), were prepared and investigated concerning the effect of UV irradiation on their gas permeabilities and selectivities. Permeability and diffusion coefficients for O2, N2, H2, and CO2 were determined using the vacuum pressure and time lag method. Sorption properties for carbon dioxide were carried out to evaluate the changes in the free volume in the membranes due to the irradiation. In both membranes, permeability coefficients for all gases used in this study decreased and permselectivity, particularly for H2 over N2, increased with increasing UV irradiation time without a significant decrease in the flux of H2. The coefficients depended on the membrane thickness, suggesting asymmetrical changes in both membranes due to UV irradiation. It was suggested by an attenuated total reflection (ATR) FTIR method and analysis of the gas sorption properties of the membranes that the physical changes due to UV irradiation at the irradiated side in both membranes significantly affected their gas permeation properties compared with the chemical changes, especially the crosslinking in the crosslinkable type. © 1997 John Wiley & Sons, Inc. J. Polym Sci B: Polym Phys 35: 2259–2269, 1997  相似文献   

6.
This study investigated the gas separation membranes made with gelatin, crosslinked with ferulic acid (FA) and blended with polyethylene glycol (PEG) 200, by using a solvent‐free procedure. Gas permeation properties (He, N2, O2, and CO2) of these “green membranes” were studied and discussed in relation with their structure. Differential scanning calorimetric measurements were carried out to determine the gelatin triple helical renaturation level. The lowest permeability values [He and CO2 permeability (4.5 × 10?2 Barrer) with CO2/O2 selectivity of 14.5] were reached with gelatin/PEG 200 uncrosslinked membranes showing the highest renaturation level (40%). Crosslinking with FA lead to less rigid and brittle materials than GTA and to 10 times more permeable membranes compared with uncrosslinked membranes. Membranes crosslinked with glutaraldehyde broke during gas permeation measurements. Results demonstrated that higher gas permeability values were closely related to lower renaturation level of gelatin. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 280–287  相似文献   

7.
A vapor permeation experiment for water–ethanol mixtures was carried out using asymmetric Ube polyimide hollow-fiber membranes, which exhibit high selective permeability for water vapor, under the conditions of T=413 K, upstream gas pressure Ph=1.5×105∼2.95×105 Pa and downstream gas pressure Pl=400 Pa. To represent gas separation properties of the Ube polyimide membrane with a high transition temperature (570 K), the contribution of Henry's law part and Langmuir part modes on the diffusion through the membrane is studied on the basis of the dual-mode transport models. The results show that Henry's law penetrant controls the diffusion in the membrane. For the separation of water–ethanol mixtures by permeation through Ube polyimide membranes, the water trapped in microcavities can be assumed to be totally immobilized under the operating conditions applied here.  相似文献   

8.
6FDA-pMDA polyimide membranes were implanted with 140 keV N+ ions to fluences between 2 × 1014 and 5 × 1015 cm−2. Variable energy positron annihilation spectra were taken and spectral features compared to previously reported changes in gas permeability and permselectivity of these membranes as a function of ion fluence. Positron data corroborate the explanation of these changes in terms of molecular damage caused by the implant: for fluences up to about 1 × 1015 cm−2, the concentration of irradiation-induced defects merely increases with implant fluence; while fluences exceeding this threshold value create a second type of positron annihilation site, thereby marking a distinct change in the structure of the polymer, which is responsible for the vast improvement of gas permselectivity data found at the same threshold fluence. PACS codes: 78.70.Bj—positron annihilation; 61.82.Pv—polymers, organic compounds; 61.72.Ww—doping and impurity implantation. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2413–2421, 1998  相似文献   

9.
We synthesized the isomeric polyimides, 6FDA-m-DDS and 6FDA-p-DDS, and investigated the gas selectivity of the asymmetric polyimide membranes with an oriented surface skin layer. Particularly, we focused on the effect of the chemical structure of the polyimide on the molecular orientation. The asymmetric membranes with the oriented skin layer were prepared by a dry–wet phase inversion process at different shear stresses. The gas permeances of the asymmetric polyimide membranes were measured using a high vacuum apparatus with a Baratron absolute pressure gauge at 76 cmHg. The molecular orientation in the asymmetric polyimide membranes was measured using polarized ATR–FTIR spectroscopy. The gas selectivity of the asymmetric 6FDA-m-DDS membrane increased with an increased in the shear stress and were greater than that of the dense membrane. In contrast, the gas selectivities of the asymmetric 6FDA-p-DDS membrane did not depend on the shear stress and were similar to those of the dense membrane. We clarified that a parallel oriented surface formed on the asymmetric 6FDA-m-DDS membrane caused the enhanced gas selectivity of the membrane.  相似文献   

10.
A series of sulfonated poly(ether ether ketone)/monoethanolamine/adipic acid (SPEEK/MEA/AA) composite membranes are prepared and investigated to assess their possibility as proton exchange membranes in direct methanol fuel cells (DMFCs). A preliminary evaluation shows that introducing MEA and AA into SPEEK matrix decreases the thermal stability of membrane. However, the degradation temperatures are still above 260 °C, satisfying the requirement for fuel cell operation. Compared with the pure SPEEK membrane, the composite membranes exhibit not only lower water uptake and swelling ratios but also better mechanical property and oxidative stability. Noticeably, the methanol diffusion coefficient of the composite membranes decrease significantly from 3.15 × 10?6 to 0.76 × 10?6 cm2/s with increasing MEA and AA content, accompanied by only a small sacrifice in proton conductivity. Although both the methanol diffusion coefficient and the proton conductivity of composite membranes are lower than those of pure SPEEK and Nafion® 117 membranes, their selectivity (conductivity/methanol diffusion coefficient) are higher. In addition, the composite membranes show excellent stability in aqueous methanol solution. The good thermal and chemical stability, low swelling ratio, excellent mechanical property, low methanol diffusion coefficient, and high selectivity make the use of these composite membranes in DMFCs quite attractive. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2871–2879, 2007  相似文献   

11.
Both homogeneous and asymmetric polyethersulfone (PES) membranes were prepared by solvent casting. The sorption and permeation behavior of CO2, O2, and N2 using these two kinds of cast PES membranes and commercially available homogeneous PES film was investigated to extract the pressure dependence of gas permeability and the permselectivity for CO2 relative to N2, and to confirm the validity of the working assumption that a skin layer in an asymmetric membrane can be essentially replaced by a thick homogeneous dense membrane. The pressure dependence of the mean permeability coefficient to CO2 in homogeneous membranes obeys the dual-mode mobility model. The ideal separation factor for CO2 relative to N2 at an upstream pressure of 0.5 MPa attains ca. 40, while the permeability to CO2 is about 2.7 Barrer at the same upstream pressure. The same separation factor in asymmetric membranes amounts to 35. The diffusion behavior for the skin layer in an asymmetric membrane with a thin skin layer can be simulated approximately by that in a homogeneous dense membrane. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
This work presents an attempt at correlating the available permeability/selectivity literature data for hollow fibers and flat membranes. Therefore, this paper gathers the information pertaining to membrane materials for which membrane properties of flat membranes and hollow fibers have both been reported. An overview of the relations between selectivity and permeance of hollow fiber membranes for various gas pairs (O2/N2, CO2/CH4, CO2/N2, H2/N2, H2/CO2, H2/CH4 and He/N2) is presented first. The upper bound lines are the ones proposed by Robeson, which were calculated by assuming a one-micron-thick skin layer as proposed by Robeson in 2008. From the results obtained, a relation between the selectivity ratio in both kinds of membranes (αHf) and skin layer thickness (l) calculated from flat membranes and hollow fibers gas permeation data for these pairs of gases is also presented. The skin layer thicknesses measured using seven different experimental techniques for six commercial membranes are compared. The influences of spinning parameters on the morphology and performance of hollow fiber membrane gas separation are discussed. Finally, an analysis is made of the reasons why the dense skin layer thicknesses of a hollow fiber calculated using permeance and permeability data vary for different gases and also differ from direct experimental measurements.  相似文献   

13.
Current bioartificial extra-corporeal systems are bioreactors where cells are separated from the surrounding media by porous polymeric membranes. The present work focuses on the design of membranes that allow the differential diffusion of plasma metabolites and proteins such as immunoglobulin (IgG). This design will improve catabolites removal and reduce possible immune response and virus infection.We demonstrate the feasibility to synthesize the hydrogels confined to the macroporous structure of membranes by radiation-induced in situ polymerization. The hollow-fiber membranes were soaked in aqueous monomeric solution, rinsed and irradiated while submerged in oil. This procedure confined the hydrogel to the void internal volume of the pores of the membrane. Hydrogels of polyacrylamide and polyHEMA were synthesized this way by irradiation at 10 kGy. Hydraulic permeability and diffusion of glucose, albumin and IgG were measured in these hydrogel-filled membranes. Polyacrylamide 0.5 M showed the best compromise between albumin diffusion (1.2×10−7 cm2/s) and HSA/IgG selectivity (2.2).  相似文献   

14.
采用具有庞大取代基团的过渡金属有机络合物作为添加剂制备了聚酰亚胺气体分离膜,研究了过渡金属盐、有机配体和金属络合物对聚酰亚胺均质膜和非对称膜氢、氮气体透过性能的影响,结果表明过渡金属盐添加剂提高了分离系数,但降低了气体透过速率;有机配体添加剂增大了气体透过速率却降低了分离系数;以络合物作添加剂时,可在不降低分离系数的情况下使气体透过速率得到提高,是一种改进气体分离膜性能的有效方法。  相似文献   

15.
CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example, natural gas upgrading, plasticization should be minimized. In this article we study a polymer membrane stabilization by a semiinterpenetrating polymer network (s-ipn) formation. For this purpose, the polyimide Matrimid 5218 is blended with the oligomer Thermid FA-700 and subsequently heat treated at 265°C. Homogeneous films are prepared with different Matrimid/Thermid ratios and different curing times. The stability of the modified membrane is tested with permeation experiments with pure CO2 as well as CO2/CH4 gas mixtures. The original membrane shows a minimum in its permeability vs. pressure curves, but the modified membranes do not indicating suppressed plasticization. Membrane performances for CO2/CH4 gas mixtures showed that the plasticizing effect indeed accelerates the permeation of methane. The modified membrane clearly shows suppression of the undesired methane acceleration. It was also found that just blending Matrimid and Thermid was not sufficient to suppress plasticization. The subsequent heat treatment that results in the s-ipn was necessary to obtain a stabilized permeability. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1547–1556, 1998  相似文献   

16.
Physical and gas transport properties of novel hyperbranched polyimide–silica hybrid membranes were investigated and compared with those of linear‐type polyimide–silica hybrid membranes with similar chemical structures. Hyperbranched polyamic acid, as a precursor, was prepared by polycondensation of a triamine, 1,3,5‐tris(4‐aminophenoxy)benzene (TAPOB), and a dianhydride, 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA). 6FDA‐TAPOB hyperbranched polyimide–silica hybrids were prepared using the polyamic acid, water, and tetramethoxysilane (TMOS) by sol–gel reaction. 5% weight‐loss temperature of the 6FDA‐TAPOB hyperbranched polyimide–silica hybrids determined by TG‐DTA measurement considerably increased with increasing silica content, indicating effective crosslinking at polymer–silica interface. CO2, O2, N2, and CH4 permeability coefficients of the 6FDA‐based polyimide–silica hybrids increased with increasing silica content. In addition, CO2/CH4 selectivity of the 6FDA‐TAPOB–silica hybrids remarkably increased with increasing silica content. From 129Xe NMR analysis, characteristic distribution and interconnectivity of cavities created around polymer–silica interface were suggested in the 6FDA‐TAPOB–silica hybrids. It was indicated that size‐selective separation ability is effectively brought by the incorporation of silica for the 6FDA‐TAPOB hyperbranched polyimide–silica hybrid membranes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 291–298, 2006  相似文献   

17.
A novel sulfonated diamine monomer, 2,2′‐bis(p‐aminophenoxy)‐1,1′‐binaphthyl‐6,6′‐disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30–80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film‐forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945–0.161 S/cm) at 20–80 °C in liquid water. The membranes exhibited methanol permeability from 9 × 10?8 to 5 × 10?7 cm2/s at 20 °C, which was much lower than that of Nafion (2 × 10?6cm2/s). The copolymers were thermally stable up to 300 °C. The sulfonated polyimide copolymers with 30–60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 222–231, 2007  相似文献   

18.
Sulfonated polyimide (SPI) and ZrO2 are blended to prepare a series of novel SPI/ZrO2 composite membranes for vanadium redox flow battery (VRFB) application. Results of atomic force microscopy and X‐ray diffraction reveal that ZrO2 is successfully composited with SPI. All SPI/ZrO2 membranes possess high proton conductivity (2.96–3.72 × 10?2 S cm?1) and low VO2+ permeability (2.18–4.04 × 10?7 cm2 min?1). SPI/ZrO2‐15% membrane is determined as the optimum one on account of its higher proton selectivity and improved chemical stability. The VRFB with SPI/ZrO2‐15% membrane presents higher coulombic efficiency and energy efficiency than that with Nafion 117 membrane at the current density, which ranged from 20 to 80 mA cm?2. Cycling tests indicate that the SPI/ZrO2‐15% membrane has good operation stability in the VRFB system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The permeability of polydimethylsiloxane [PDMS] to acetone, nitrogen, and acetone/nitrogen mixtures has been determined at 28°C. In pure gas experiments, the permeability of PDMS to nitrogen was 245 × 10−10 cm3(STP) · cm/cm2 · s · cmHg and was independent of pressure. The permeability of PDMS to acetone vapor increased exponentially with increasing acetone pressure. PDMS is much more permeable to acetone than to nitrogen; acetone/nitrogen selectivity increases from 85 to 185 as acetone partial pressure in the feed increases from 0 to 67% of saturation. In mixed gas permeation experiments, the nitrogen permeability coefficient is independent of acetone relative pressure and is equal to the pure gas permeability coefficient. The acetone permeability coefficient has the same value in both mixed gas and pure acetone permeation experiments. Average acetone diffusivity in PDMS, determined as the ratio of permeability to solubility, decreases with increasing acetone concentration due to mild clustering of acetone in the polymer (because acetone is a poor solvent for PDMS) and changes in the polymer–penetrant thermodynamic interactions which influence diffusion coefficients. A Zimm–Lundberg analysis of the acetone sorption isotherm is also consistent with acetone clustering in PDMS. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 289–301, 1998  相似文献   

20.
Integrally skinned asymmetric poly(vinylidene fluoride) hollow fibre membranes were prepared and characterized. The effects of phase inversion methods (dry-wet or wet) and spinning conditions, such as the type of solvent (NMP, DMAc), the concentration of polymer in dope solution, temperature of the external coagulation bath and the composition of the inner coagulant on the morphology and on the formation of a dense skin layer were investigated. The structure of the membranes was analyzed by scanning electron microscopy and the gas permeation properties with six different gases (He, H2, N2, O2, CH4 and CO2) were measured at 25 °C to confirm the integrity of the selective skin layer. Under the proper conditions highly selective and permeable PVDF hollow fibre membranes were thus obtained by dry-wet spinning of a 30 wt.% PVDF solution in DMAc, using hot water (50 °C) as the external coagulant and a bore fluid of pure water as the internal coagulant. The best membrane had a selective outer skin with an effective thickness of approximately 0.2 μm. The ideal selectivity of the hollow fibres approached or even exceeded the intrinsic ideal selectivity of a dense PVDF film, for instance the selectivity for He over N2 was 86.2 for the hollow fibre, whereas it was 83.5 for a dense PVDF reference film. DSC and FT-IR/ATR analysis indicated a higher fraction of the β-crystal phase in the selective skin and a high overall crystallinity than in the melt-processed film. The latter explains the relatively high selectivity and low permeability of the membranes. Intrinsic polymer properties make the membranes also suitable for vapour transport than for gas separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号