首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well‐defined amphiphilic polymethylene‐b‐poly(ε‐caprolactone)‐b‐poly(acrylic acid) (PM‐b‐PCL‐b‐PAA) triblock copolymers were synthesized via a combination of polyhomologation, ring‐opening polymerization (ROP), and atom transfer radical polymerization (ATRP). First, hydroxyl‐terminated polymethylenes (PM‐OH; Mn = 1100 g mol?1; Mw/Mn = 1.09) were produced by polyhomologation followed by oxidation. Then, the PM‐b‐PCL (Mn = 10,000 g mol?1; Mw/Mn = 1.27) diblock copolymers were synthesized via ROP of ε‐caprolactone using PM‐OH as macroinitiator and stannous octanoate (Sn(Oct)2) as a catalyst. Subsequently, the macroinitiator transformed from PM‐b‐PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBA) to construct PM‐b‐PCL‐b‐PtBA triblock copolymers (Mn = 11,000–14,000 g mol?1; Mw/Mn = 1.24–1.26). Finally, the PM‐b‐PCL‐b‐PAA triblock copolymers were obtained via the hydrolysis of the PtBA segment in PM‐b‐PCL‐b‐PtBA triblock copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance, and Fourier transform infrared spectroscopy. Porous films of such triblock copolymers were fabricated by static breath‐figure method and observed by scanning electron microscope. The aggregates of PM‐b‐PCL‐b‐PAA triblock copolymer were studied by transmission electron microscope. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
The H‐shaped copolymers, [poly(L ‐lactide)]2polystyrene [poly(L ‐lactide)]2, [(PLLA)2PSt(PLLA)2] have been synthesized by combination of atom transfer radical polymerization (ATRP) with cationic ring‐opening polymerization (CROP). The first step of the synthesis is ATRP of St using α,α′‐dibromo‐p‐xylene/CuBr/2,2′‐bipyridine as initiating system, and then the PSt with two bromine groups at both chain ends (Br–PSt–Br) were transformed to four terminal hydroxyl groups via the reaction of Br–PSt–Br with diethanolamine in N,N‐dimethylformamide. The H‐shaped copolymers were produced by CROP of LLA, using PSt with four terminal hydroxyl groups as macroinitiator and Sn(Oct)2 as catalyst. The copolymers obtained were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2794–2801, 2006  相似文献   

3.
Amphiphilic diblock copolymer polycaprolactone‐block‐poly(glycidyl methacrylate) (PCL‐b‐PGMA) was synthesized via enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). Methanol first initiated eROP of ?‐caprolactone (?‐CL) in the presence of biocatalyst Novozyme‐435 under anhydrous conditions. The resulting monohydroxyl‐terminated polycaprolactone (PCL–OH) was subsequently converted to a bromine‐ended macroinitiator (PCL–Br) for ATRP by esterification with α‐bromopropionyl bromide. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate (GMA). A kinetic analysis of ATRP indicated a living/controlled radical process. The macromolecular structures were characterized for PCL–OH, PCL–Br, and the block copolymers by means of nuclear magnetic resonance, gel permeation chromatography, and infrared spectroscopy. Differential scanning calorimetry and wide‐angle X‐ray diffraction analyses indicated that the copolymer composition (?‐CL/GMA) had a great influence on the thermal properties. The well‐defined, amphiphilic diblock copolymer PCL‐b‐PGMA self‐assembled into nanoscale micelles in aqueous solutions, as investigated by dynamic light scattering and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5037–5049, 2007  相似文献   

4.
A series of well‐defined three‐arm star poly(ε‐caprolactone)‐b‐poly(acrylic acid) copolymers having different block lengths were synthesized via the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). First, three‐arm star poly(ε‐caprolactone) (PCL) (Mn = 2490–7830 g mol?1; Mw/Mn = 1.19–1.24) were synthesized via ROP of ε‐caprolactone (ε‐CL) using tris(2‐hydroxyethyl)cynuric acid as three‐arm initiator and stannous octoate (Sn(Oct)2) as a catalyst. Subsequently, the three‐arm macroinitiator transformed from such PCL in high conversion initiated ATRPs of tert‐butyl acrylate (tBuA) to construct three‐arm star PCL‐b‐PtBuA copolymers (Mn = 10,900–19,570 g mol?1; Mw/Mn = 1.14–1.23). Finally, the three‐arm star PCL‐b‐PAA copolymer was obtained via the hydrolysis of the PtBuA segment in three‐arm star PCL‐b‐PtBuA copolymers. The chain structures of all the polymers were characterized by gel permeation chromatography, proton nuclear magnetic resonance (1H NMR), and Fourier transform infrared spectroscopy. The aggregates of three‐arm star PCL‐b‐PAA copolymer were studied by the determination of critical micelles concentration and transmission electron microscope. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
Novel amphiphilic A14B7 multimiktoarm star copolymers composed of 14 poly(ε‐caprolactone) (PCL) arms and 7 poly(acrylic acid) (PAA) arms with β‐cyclodextrin (β‐CD) as core moiety were synthesized by the combination of controlled ring‐opening polymerization (CROP) and atom transfer radical polymerization (ATRP). 14‐Arm star PCL homopolymers (CDSi‐SPCL) were first synthesized by the CROP of CL using per‐6‐(tert‐butyldimethylsilyl)‐β‐CD as the multifunctional initiator in the presence of Sn(Oct)2 at 125 °C. Subsequently, the hydroxyl end groups of CDSi‐SPCL were blocked by acetyl chloride. After desilylation of the tert‐butyldimethylsilyl ether groups from the β‐CD core, 7 ATRP initiating sites were introduced by treating with 2‐bromoisobutyryl bromide, which further initiated ATRP of tert‐butyl acrylate (tBA) to prepare well‐defined A14B7 multimiktoarm star copolymers [CDS(PCL‐PtBA)]. Their molecular structures and physical properties were in detail characterized by 1H NMR, SEC‐MALLS, and DSC. The selective hydrolysis of tert‐butyl ester groups of the PtBA block gave the amphiphilic A14B7 multimiktoarm star copolymers [CDS(PCL‐PAA)]. These amphiphilic copolymers could self‐assemble into multimorphological aggregates in aqueous solution, which were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2961–2974, 2010  相似文献   

6.
Novel and well‐defined amphiphilic dendrimer‐star copolymer poly(ε‐caprolactone)‐block‐(poly(2‐(2‐methoxyethoxy)ethylmethacrylate‐co‐oligo(ethylene glycol) methacrylate))2 with Y‐shaped arms were synthesized by the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The investigation of thermal properties and the analysis of crystalline morphology indicate that the high‐branched structure of dendrimer‐star copolymers with Y‐shaped arms and the presence of amorphous P(MEO2MA‐co‐OEGMA) segments together led to the complete destruction of crystallinity of the PCL segments in the dendrimer‐star copolymer. In addition, the hydrophilicity–hydrophobicity transition of the dendrimer‐star copolymer film can be achieved by altering the external temperatures. The amphiphilic copolymers can self‐assemble into spherical nanomicelles in water. Because the lower critical solution temperature of the copolymers can be adjusted by varying the ratio of MEO2MA and OEGMA, the tunable thermosensitive properties can be observed by transmittance, dynamic laser light scattering, and transmission electron microscopy (TEM). The release rate of model drug chlorambucil from the micelles can be effectively controlled by changing the external temperatures, which indicates that these unique high‐branched amphiphilic copolymers have the potential applications in biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

8.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

9.
A new facile method for preparation of an amphiphilic block copolymer via a one‐pot sequential atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) on solid support was developed. As a model homopolymerization for the solid‐supported block copolymerization, ATRPs of MMA and HEMA in toluene and in 2‐butanone/1‐propanol solvent system were carried out, respectively. Crosslinked polystyrene beads bearing 2‐bromoisobutyrate moieties successfully initiated the polymerizations of MMA and HEMA in controlled manner. On the basis of the successful results, the one‐pot synthesis of amphiphilic block copolymer by changing the reaction medium was performed. After the ATRP of MMA in toluene at 90 °C for 1 h, the poly(MMA) formed on the beads were washed by continuous flow of 2‐butanone/1‐propanol under nitrogen with the aid of a glass filter in a U‐shaped glass vessel. Then, 2‐butanone/1‐propanol, copper chloride (I), 2,2′‐bipyridyl, and HEMA were added and heated at 50 °C for 48 h with shaking the vessel, followed by treatment with trifluoroacetic acid to isolate the well‐defined amphiphilic block copolymer, poly(MMA‐b‐HEMA). These demonstrated the feasibility of the present strategy for well‐defined synthesis of amphiphilic block copolymers via a one‐pot procedure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1990–1997, 2008  相似文献   

10.
A series of well‐defined θ‐shaped copolymers composed of polystyrene (PS) and poly(ε‐caprolactone) (PCL) with controlled molecular weight and narrow molecular weight distribution have been successfully synthesized without any purification procedure by the combination of atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP), and the “click” chemistry. The synthetic process involves two steps: (1) synthesis of AB2 miktoarm star copolymers, which contain one PCL chain terminated with two acetylene groups and two PS chains with two azido groups at their one end, (α,α′‐diacetylene‐PCL) (ω‐azido‐PS)2, by ROP, ATRP, and the terminal group transformation; (2) intramolecular cyclization of AB2 miktoarm star copolymers to produce well‐defined pure θ‐shaped copolymers using “click” chemistry under high dilution. The 1H NMR, FTIR, and gel permeation chromatography techniques were applied to characterize the chemical structures of the resultant intermediates and the target polymers. Their thermal behavior was investigated by DSC. The mobility decrease of PCL chain across PS ring in the theta‐shaped copolymers restricts the crystallization ability of PCL segment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2620–2630, 2009  相似文献   

11.
Well‐defined hetero eight‐shaped copolymers composed of polystyrene (PS) and poly(ε‐caprolactone) (PCL) with controlled molecular weight and narrow molecular weight distribution were successfully synthesized by the combination of ring‐opening polymerization, ATRP, and “click” reaction. The synthetic procedure involves three steps: (1) preparation of a tetrafunctional PS and PCL star copolymer with two PS and two PCL arms using the tetrafunctional initiator bearing two hydroxyl groups and two bromo groups; (2) synthesis of tetrafunctional star copolymer, (α‐acetylene‐PCL)2(ω‐azido‐PS)2, by the transition of terminal hydroxyl and bromo groups to acetylene and azido groups through the reaction with 4‐propargyloxybutanedioyl chloride and NaN3 respectively; (3) intramolecular cyclization reaction to produce the hetero eight‐shaped copolymers using “click” chemistry under high dilution. The 1H NMR, FTIR, and gel permeation chromatography techniques were applied to characterize the chemical structures of the resulted intermediates and the target polymers. Their thermal behavior was investigated by DSC, and their crystallization behaviors of PCL were studied by polarized optical microscopy. The decrease in chain mobility of the eight‐shaped copolymers restricts the crystallization of PCL and the crystallization rate of PCL is slower in comparison with their corresponding star precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6496–6508, 2008  相似文献   

12.
The block glycopolymer, poly(2‐(α‐d ‐mannopyranosyloxy)ethyl methacrylate)‐b‐poly(l ‐lactide) (PManEMA‐b‐PLLA), was synthesized via a coupling approach. PLLA having an ethynyl group was successfully synthesized via ring‐opening polymerization using 2‐propyn‐1‐ol as an initiator. The ethynyl functionality of the resulting polymer was confirmed by MALDI‐TOF mass spectroscopy. In contrast, PManEMA having an azide group was prepared via AGET ATRP using 2‐azidopropyl 2‐bromo‐2‐methylpropanoate as an initiator. The azide functionality of the resulting polymer was confirmed by IR spectroscopy. The Cu(I)‐catalyzed 1,3‐dipolar cycloaddition between PLLA and PManEMA was performed to afford PManEMA‐b‐PLLA. The block structure was confirmed by 1H NMR spectroscopy and size exclusion chromatography. The aggregating properties of the block glycopolymer, PManEMA16kb‐PLLA6.4k (M n,PManEMA = 16,000, M n,PLLA = 6400) was examined by 1H NMR spectroscopy, fluorometry using pyrene, and dynamic light scattering. The block glycopolymer formed complicated aggregates at concentrations above 21 mg·L?1 in water. The d ‐mannose presenting property of the aggregates was also characterized by turbidimetric assay using concanavalin A. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 395–403  相似文献   

13.
A series of novel amphiphilic brush‐dendritic‐linear poly[poly(ethylene glycol) methyl ether methacrylate]‐b‐polyamidoamine‐b‐poly(ε‐caprolactone) copolymers (PPEGMEMA‐b‐Dmb‐PCL) (m = 1, 2, and 3: the generation number of dendron) were synthesized by the combination techniques of click chemistry, atom transfer radical polymerization (ATRP), and ring‐opening polymerization (ROP). The brush‐dendritic copolymers bearing hydrophilic brush PPEGMEMA and hydrophobic dendron polyamidoamine protected by the tert‐butoxycarbonyl (Boc) groups [Dm‐(Boc) (m = 1, 2, and 3)] were for the first time prepared by ATRP of poly(ethylene glycol) methyl ether methacrylate monomer (PEGMEMA) initiated with the dendron initiator, which was prepared from 2′‐azidoethyl‐2‐bromoisobutyrate (AEBIB) and Dm‐(Boc) terminated with a clickable alkyne by click chemistry. Then, the brush‐dendritic copolymers with primary amine groups (PPEGMEMA‐b‐Dm) were obtained from the removal of the protected Boc groups of the brush‐dendritic copolymers in the presence of trifluoroacetic acid. The brush‐dendritic‐linear PPEGMEMA‐b‐Dmb‐PCL copolymers were synthesized from ROP of ε‐caprolactone monomer using PPEGMEMA‐b‐Dm as the macroinitiators and stannous octoate as catalyst in toluene at 130 °C. To the best of our knowledge, this is the first report that integrates hydrophilic brush polymer PPEGMEMA with hydrophobic polyamidoamine (PAMAM) dendron and PCL to form amphiphilic brush‐dendritic‐linear copolymers. The amphiphilic brush‐dendritic‐linear copolymers can self‐assemble into spherical micellar structures in aqueous solution. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

15.
A Y‐shaped diblock copolymer with a functional block poly(glycidyl methacrylate) was synthesized via the combination of enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). The synthetic procedure involved eROP of ε‐caprolactone (ε‐CL) in the presence of biocatalyst Novozyme 435 and initiator 1H,1H,2H,2H‐perfluoro‐1‐octaoxy, subsequently the resulting poly(ε‐caprolactone) (PCL) was converted to a macroinitiator by esterification of it with 2,2‐dichloro acetyl chloride, and finally the ATRP of glycidyl methacrylate (GMA) was conducted at 60 °C with CuCl/2,2′‐bipyridine as the catalyst system. By this process, we obtained copolymers with a controlled molecular weight and a low polydispersity. The structure and composition of the obtained polymers were characterized by H NMR, GPC, and IR. Linear first‐order kinetics, linearly increased molecular weight with conversion, and low polydispersities were observed for the ATRP of GMA. The thermal properties of the copolymer were characterized by differential scanning calorimetry. The self‐assembly behavior of the Y‐shaped block copolymer was also investigated in different solvents and at different concentrations. The aggregates of various morphologies (spheres, worm‐like patterns, nanowell patterns, and dendritic patterns) were observed. It was found that solvents remarkably influenced the morphologies of the films spin‐coated from the corresponding solutions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5509–5526, 2009  相似文献   

16.
A non‐olefinic monomer, methyl 1‐bicyclobutanecarboxylate (MBC), was successfully polymerized by the controlled/“living” atom transfer radical polymerization (ATRP) technique, resulting in a well‐defined homopolymer, PMBC, with only cyclobutane ring units in the polymer chain. An AB block copolymer poly(methyl 1‐bicyclobutanecarboxylate)‐b‐polystyrene (PMBC‐b‐PS), having an all‐ring unit segment, was also synthesized with narrow polydispersity and designed number‐average molecular weight in addition to precise end groups. The 1H NMR spectra, glass‐transition temperature, and thermal stability of PMBC, PMBC‐b‐PS, and PS‐b‐PMBC were investigated. The experimental results showed that the cyclobutane rings in the two block polymers improved their thermal stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1929–1936, 2002  相似文献   

17.
Four well‐defined diblock copolymers and one statistical copolymer based on lauryl methacrylate (LauMA) and 2‐(acetoacetoxy)ethyl methacrylate (AEMA) were prepared using reversible addition‐fragmentation chain transfer (RAFT) polymerization. The polymers were characterized in terms of molecular weights, polydispersity indices (ranging between 1.12 and 1.23) and compositions by size exclusion chromatography and 1H NMR spectroscopy, respectively. The preparation of the block copolymers was accomplished following a two‐step methodology: First, well‐defined LauMA homopolymers were prepared by RAFT using cumyl dithiobenzoate as the chain transfer agent (CTA). Kinetic studies revealed that the polymerization of LauMA followed first‐order kinetics demonstrating the “livingness” of the RAFT process. The pLauMAs were subsequently used as macro‐CTA for the polymerization of AEMA. The glass transition (Tg) and decomposition temperatures (ranging between 200 and 300 °C) of the copolymers were determined using differential scanning calorimetry and thermal gravimetric analysis, respectively. The Tgs of the LauMA homopolymers were found to be around ?53 °C. Block copolymers exhibited two Tgs suggesting microphase separation in the bulk whereas the statistical copolymer presented a single Tg as expected. Furthermore, the micellization behavior of pLauMA‐b‐pAEMA block copolymers was investigated in n‐hexane, a selective solvent for the LauMA block, using dynamic light scattering. pLauMA‐b‐pAEMA block copolymers formed spherical micelles in dilute hexane solutions with hydrodynamic diameters ranging between 30 and 50 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5442–5451, 2008  相似文献   

18.
19.
Well‐defined amphiphilic and thermoresponsive ABC miktoarm star terpolymer consisting of poly(ethylene glycol), poly(tert‐butyl methacrylate), and poly(N‐isopropylacrylamide) arms, PEG(‐b‐PtBMA)‐b‐PNIPAM, was synthesized via a combination of consecutive click reactions and atom transfer radical polymerization (ATRP). Click reaction of monoalkynyl‐terminated PEG with a trifunctional core molecule bis(2‐azidoethyl)amine, (N3)2? NH, afforded difunctional PEG possessing an azido and a secondary amine moiety at the chain end, PEG‐NH? N3. Next, the amidation of PEG‐NH? N3 with 2‐chloropropionyl chloride led to PEG‐based ATRP macroinitiator, PEG(? N3)? Cl. The subsequent ATRP of N‐isopropylacrylamide (NIPAM) using PEG(? N3)? Cl as the macroinitiator led to PEG(? N3)‐b‐PNIPAM bearing an azido moiety at the diblock junction point. Finally, well‐defined ABC miktoarm star terpolymer, PEG(‐b‐PtBMA)‐b‐PNIPAM, was prepared via the click reaction of PEG(? N3)‐b‐PNIPAM with monoalkynyl‐terminated PtBMA. In aqueous solution, the obtained ABC miktoarm star terpolymer self‐assembles into micelles consisting of PtBMA cores and hybrid PEG/PNIPAM coronas, which are characterized by dynamic and static laser light scattering, and transmission electron microscopy. On heating above the phase transition temperature of PNIPAM in the hybrid corona, micelles initially formed at lower temperatures undergo further structural rearrangement and fuse into much larger aggregates solely stabilized by PEG coronas. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4001–4013, 2009  相似文献   

20.
A series of well‐defined ferrocene‐based amphiphilic graft copolymers, consisting of poly(N‐isopropylacrylamide)‐b‐poly(ethyl acrylate) (PNIPAM‐b‐PEA) backbone and poly(2‐acryloyloxyethyl ferrocenecarboxylate) (PAEFC) side chains, were synthesized by the combination of single‐electron‐transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). A new ferrocene‐based monomer, 2‐(acryloyloxy)ethyl ferrocenecarboxylate (AEFC), was prepared first and it can be polymerized via ATRP in a controlled way using methyl 2‐bromopropionate as initiator and CuBr/PMDETA as catalytic system in DMF at 40 °C. PNIPAM‐b‐PEA backbone was synthesized by sequential SET‐LRP of NIPAM and HEA at 25 °C using CuCl/Me6TREN as catalytic system followed by the transformation into the macroinitiator by treating the pendant hydroxyls with α‐bromoisobutyryl bromide. The targeted well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) were synthesized via ATRP of AEFC initiated by the macroinitiator. The electro‐chemical behaviors of PAEFC homopolymer and PNIPAM‐b‐(PEA‐g‐PAEFC) graft copolymer were studied by cyclic voltammetry. Micellar properties of PNIPAM‐b‐(PEA‐g‐PAEFC) were investigated by transmission electron microscopy and dynamic light scattering. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4346–4357, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号