首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Developement of numerical methods for obtaining approximate solutions to the three dimensional diffusion equation with an integral condition will be carried out. The numerical techniques discussed are based on the fully explicit (1,7) finite difference technique and the fully implicit (7,1) finite difference method and the (7,7) Crank‐Nicolson type finite difference formula. The new developed methods are tested on a problem. Truncation error analysis and numerical examples are used to illustrate the accuracy of the new algorithms. The results of numerical testing show that the numerical methods based on the finite difference techniques discussed in the present article produce good results. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 193–202, 2002; DOI 10.1002/num.1040  相似文献   

2.
In this research, the problem of solving the two‐dimensional parabolic equation subject to a given initial condition and nonlocal boundary specifications is considered. A technique based on the pseudospectral Legendre method is proposed for the numerical solution of the studied problem. Several examples are given and the numerical results are shown to demonstrate the efficiently of the newly proposed method. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

3.
We present a high‐order shifted Gegenbauer pseudospectral method (SGPM) to solve numerically the second‐order one‐dimensional hyperbolic telegraph equation provided with some initial and Dirichlet boundary conditions. The framework of the numerical scheme involves the recast of the problem into its integral formulation followed by its discretization into a system of well‐conditioned linear algebraic equations. The integral operators are numerically approximated using some novel shifted Gegenbauer operational matrices of integration. We derive the error formula of the associated numerical quadratures. We also present a method to optimize the constructed operational matrix of integration by minimizing the associated quadrature error in some optimality sense. We study the error bounds and convergence of the optimal shifted Gegenbauer operational matrix of integration. Moreover, we construct the relation between the operational matrices of integration of the shifted Gegenbauer polynomials and standard Gegenbauer polynomials. We derive the global collocation matrix of the SGPM, and construct an efficient computational algorithm for the solution of the collocation equations. We present a study on the computational cost of the developed computational algorithm, and a rigorous convergence and error analysis of the introduced method. Four numerical test examples have been carried out to verify the effectiveness, the accuracy, and the exponential convergence of the method. The SGPM is a robust technique, which can be extended to solve a wide range of problems arising in numerous applications. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 307–349, 2016  相似文献   

4.
A numerical technique is presented for the solution of the second order one‐dimensional linear hyperbolic equation. This method uses the Chebyshev cardinal functions. The method consists of expanding the required approximate solution as the elements of Chebyshev cardinal functions. Using the operational matrix of derivative, the problem is reduced to a set of algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces very accurate results. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

5.
This article describes a numerical method based on the boundary integral equation and dual reciprocity method for solving the one‐dimensional Sine‐Gordon (SG) equation. The time derivative is approximated by the time‐stepping method and a predictor–corrector scheme is employed to deal with the nonlinearity which appears in the problem. Numerical results are presented for some problems to demonstrate the usefulness and accuracy of this approach. In addition, the conservation of energy in SG equation is investigated. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

6.
Numerical solution of hyperbolic partial differential equation with an integral condition continues to be a major research area with widespread applications in modern physics and technology. Many physical phenomena are modeled by nonclassical hyperbolic boundary value problems with nonlocal boundary conditions. In place of the classical specification of boundary data, we impose a nonlocal boundary condition. Partial differential equations with nonlocal boundary specifications have received much attention in last 20 years. However, most of the articles were directed to the second‐order parabolic equation, particularly to heat conduction equation. We will deal here with new type of nonlocal boundary value problem that is the solution of hyperbolic partial differential equations with nonlocal boundary specifications. These nonlocal conditions arise mainly when the data on the boundary can not be measured directly. Several finite difference methods have been proposed for the numerical solution of this one‐dimensional nonclassic boundary value problem. These computational techniques are compared using the largest error terms in the resulting modified equivalent partial differential equation. Numerical results supporting theoretical expectations are given. Restrictions on using higher order computational techniques for the studied problem are discussed. Suitable references on various physical applications and the theoretical aspects of solutions are introduced at the end of this article. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

7.
In this article, an iterative method for the approximate solution of a class of Burgers' equation is obtained in reproducing kernel space . It is proved the approximation converges uniformly to the exact solution u(x, t) for any initial function under trivial conditions, the derivatives of are also convergent to the derivatives of u(x, t), and the approximate solution is the best approximation under the system © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1251–1264, 2015  相似文献   

8.
In this article, the Ritz‐Galerkin method in Bernstein polynomial basis is implemented to give an approximate solution of a hyperbolic partial differential equation with an integral condition. We will deal here with a type of nonlocal boundary value problem, that is, the solution of a hyperbolic partial differential equation with a nonlocal boundary specification. The nonlocal conditions arise mainly when the data on the boundary cannot be measured directly. The properties of Bernstein polynomial and Ritz‐Galerkin method are first presented, then Ritz‐Galerkin method is used to reduce the given hyperbolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique presented in this article. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

9.
In this article, we continue the numerical study of hyperbolic partial differential‐difference equation that was initiated in (Sharma and Singh, Appl Math Comput 9 ). In Sharma and Singh, the authors consider the problem with sufficiently small shift arguments. The term negative shift and positive shift are used for delay and advance arguments, respectively. Here, we propose a numerical scheme that works nicely irrespective of the size of shift arguments. In this article, we consider hyperbolic partial differential‐difference equation with negative or positive shift and present a numerical scheme based on the finite difference method for solving such type of initial and boundary value problems. The proposed numerical scheme is analyzed for stability and convergence in L norm. Finally, some test examples are given to validate convergence, the computational efficiency of the numerical scheme and the effect of shift arguments on the solution.© 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

10.
In this article we propose a numerical scheme to solve the one‐dimensional hyperbolic telegraph equation. The method consists of expanding the required approximate solution as the elements of shifted Chebyshev polynomials. Using the operational matrices of integral and derivative, we reduce the problem to a set of linear algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces very accurate results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

11.
In this article, we introduce a high‐order accurate method for solving one‐space dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivative of linear hyperbolic equation and collocation method for the time component. The main property of this method additional to its high‐order accuracy due to the fourth order discretization of spatial derivative, is its unconditionally stability. In this technique the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method produce a very efficient method for solving the one‐space‐dimensional linear hyperbolic equation. We compare the numerical results of this paper with numerical results of (Mohanty, 3 .© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

12.
In this article, we first transform the telegraph equation into a system of partial differential equations. Then, we apply the variational iteration method to compute an approximate solution for the telegraph equation. Convergence of the proposed method is also discussed. Finally, some numerical examples are given to show the effectiveness of the proposed method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1442–1455, 2011  相似文献   

13.
We present a numerical method for the solution of heat equation with sufficiently smooth initial condition, using fundamental solutions of heat equation in terms of singularities. In this work various aspects of this method such as efficiency, stability, and convergency are given and a comparison with some well‐known finite difference methods will be obtained. Numerical results are reported to support the superiority of the developed method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

14.
Problems for parabolic partial differential equations with nonlocal boundary conditions have been studied in many articles, but boundary value problems for hyperbolic partial differential equations have so far remained nearly uninvestigated. In this article a numerical technique is presented for the solution of a nonclassical problem for the one‐dimensional wave equation. This method uses the cubic B‐spline scaling functions. Some numerical results are reported to support our study. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

15.
In this paper, we are going to deal with the nonlocal mixed boundary value problem for the Moore‐Gibson‐Thompson equation. Galerkin method was the main used tool for proving the solvability of the given nonlocal problem.  相似文献   

16.
An inverse problem concerning diffusion equation with a source control parameter is investigated. The approximation of the problem is based on the Legendre multiscaling basis. The properties of Legendre multiscaling functions are first presented. These properties together with Galerkin method are then utilized to reduce the inverse problem to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

17.
对带非局部边界条件的热方程的初边值问题提出了LEGENDRE配置法,并给出其半离散逼近和全离散逼近的稳定性和收敛性分析.数值试验验证了方法的有效性.  相似文献   

18.
This research gives a complete Lie group classification of the one‐dimensional nonlinear delay Klein–Gordon equation. First, the determining equations are derived and their complete solutions are found. Then the complete group classification and representations of all invariant solutions are obtained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In the current article, we investigate the RBF solution of second‐order two‐space dimensional linear hyperbolic telegraph equation. For this purpose, we use a combination of boundary knot method (BKM) and analog equation method (AEM). The BKM is a meshfree, boundary‐only and integration‐free technique. The BKM is an alternative to the method of fundamental solution to avoid the fictitious boundary and to deal with low accuracy, singular integration and mesh generation. Also, on the basis of the AEM, the governing operator is substituted by an equivalent nonhomogeneous linear one with known fundamental solution under the same boundary conditions. Finally, several numerical results and discussions are demonstrated to show the accuracy and efficiency of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A new shift‐adaptive meshfree method for solving a class of time‐dependent partial differential equations (PDEs) in a bounded domain (one‐dimensional domain) with moving boundaries and nonhomogeneous boundary conditions is introduced. The radial basis function (RBF) collocation method is combined with the finite difference scheme, because, unlike with Kansa's method, nonlinear PDEs can be converted to a system of linear equations. The grid‐free property of the RBF method is exploited, and a new adaptive algorithm is used to choose the location of the collocation points in the first time step only. In fact, instead of applying the adaptive algorithm on the entire domain of the problem (like with other existing adaptive algorithms), the new adaptive algorithm can be applied only on time steps. Furthermore, because of the radial property of the RBFs, the new adaptive strategy is applied only on the first time step; in the other time steps, the adaptive nodes (obtained in the first time step) are shifted. Thus, only one small system of linear equations must be solved (by LU decomposition method) rather than a large linear or nonlinear system of equations as in Kansa's method (adaptive strategy applied to entire domain), or a large number of small linear systems of equations in the adaptive strategy on each time step. This saves a lot in time and memory usage. Also, Stability analysis is obtained for our scheme, using Von Neumann stability analysis method. Results show that the new method is capable of reducing the number of nodes in the grid without compromising the accuracy of the solution, and the adaptive grading scheme is effective in localizing oscillations due to sharp gradients or discontinuities in the solution. The efficiency and effectiveness of the proposed procedure is examined by adaptively solving two difficult benchmark problems, including a regularized long‐wave equation and a Korteweg‐de Vries problem. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1622–1646, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号