首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

2.
Initiated by an organic molecule trifluoromethanesulfonimide (HNTf2) without any Lewis acid or Lewis base stabilizer, cationic polymerization of isobutyl vinyl ether (IBVE) takes place rapidly and the polymerization is proved to be in a controlled/living manner. The conversion of IBVE could easily achieve 99% in seconds. The product poly(isobutyl vinyl ether) is narrowly distributed and its molecular weight increases linearly with time and fits well with the corresponding theoretical value. This single‐molecular initiating system also works well in the living cationic polymerization of ethyl vinyl ether. HNTf2 is considered playing multiple roles which include initiator, activator, and stabilizer in the polymerization. It is quite different from the hydrogen halide‐catalyzed polymerizations of vinyl ethers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1373‐1377  相似文献   

3.
A quite small dose of a poisonous species was found to induce living cationic polymerization of isobutyl vinyl ether (IBVE) in toluene at 0 °C. In the presence of a small amount of N,N‐dimethylacetamide, living cationic polymerization of IBVE was achieved using SnCl4, producing a low polydispersity polymer (weight–average molecular weight/number–average molecular weight (Mw/Mn) ≤ 1.1), whereas the polymerization was terminated at its higher concentration. In addition, amine derivatives (common terminators) as stronger bases allow living polymerization when a catalytic quantity was used. On the other hand, EtAlCl2 produced polymers with comparatively broad MWDs (Mw/Mn ~ 2), although the polymerization was slightly retarded. The systems with a strong base required much less quantity of bases than weak base systems such as ethers or esters for living polymerization. The strong base system exhibited Lewis acid preference: living polymerization proceeded only with SnCl4, TiCl4, or ZnCl2, whereas a range of Lewis acids are effective for achieving living polymerization in the conventional weak base system such as an ester and an ether. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6746–6753, 2008  相似文献   

4.
Combination of coordination polymerization and atom transfer radical polymerization (ATRP) was applied to a novel synthesis of rod‐coil block copolymers. The procedure included the following steps: (1) monoesterification reaction of ethylene glycol with 2‐bromoisobutyryl bromide yielded a α‐bromo, ω‐hydroxy bifunctional initiator, (2) CpTiCl3 (bifunctional initiator) catalyst was prepared from a mixture of trichlorocyclopentadienyl titanium (CpTiCl3) and bifunctional initiator. Coordination polymerization of n‐butyl isocyanate initiated by such catalyst provided a well‐defined macroinitiator, poly(n‐butyl isocyanate)‐Br (PBIC‐Br), and (3) ATRP method of vinyl monomers using PBIC‐Br provided rod (PBIC)‐coil block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4037–4042, 2007  相似文献   

5.
Cationic polymerization of n‐butyl propenyl ether (BuPE; CH3CH CHOBu, cis/trans = 64/36) was examined with the HCl–IBVE (isobutyl vinyl ether) adduct/ZnCl2 initiating system at −15 ∼ −78 °C in nonpolar (hexane, toluene) and polar (dichloromethane) solvents, specifically focusing on the feasibility of its living polymerization. In contrast to alkyl vinyl ethers, the living nature of the growing species in the BuPE polymerization was sensitive to polymerization temperature and solvent. For example, living cationic polymerization of IBVE can be achieved even at 0 °C with HCl–IBVE/ZnCl2, whereas for BuPE whose β‐methyl group may cause steric hindrance ideal living polymerization occurred only at −78 °C. Another interesting feature of this polymerization is that the polymerization rate in hexane is as large as in dichloromethane, much larger than in toluene. A new method in determining the ratio of the living growing ends to the deactivated ones was developed with a devised monomer‐addition experiments, in which IBVE that can be polymerized in a living fashion below 0 °C was added to the almost completely polymerized solution of BuPE. The amount of the deactivated chain ends became small in hexane even at −40 °C in contrast to other solvents. Thus hexane turned out an excellent solvent for living cationic polymerization of BuPE. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 229–236, 2000  相似文献   

6.
The cationic polymerization of isobutyl vinyl ether was examined with transition‐metal ate complexes with trityl cation as initiators. The initiators were generated by the reaction of triphenylmethyl chloride [trityl chloride (TrCl)] with ate complexes of Nb, Mo, and W with lithium cation, which were obtained in situ by the reaction of the transition‐metal halides with anionic reagents (organolithium or lithium amide). When the polymerization was initiated with a mixture of TrCl and Li+[NbH5(NnBuPh)]?, the resulting poly(isobutyl vinyl ether)s had narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.13–1.20). Although the polymerization was supposed to be initiated by the electrophilic attack of the trityl cation, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of the resulting poly(isobutyl vinyl ether)s revealed the presence of H at the α‐chain end. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2636–2641, 2006  相似文献   

7.
The polymerization of isobutyl vinyl ether (IBVE) and tert‐butyl vinyl ether (TBVE) was carried out with metallocene and nonmetallocene catalysts, and the stereoregularity of the formed polymers was examined with 13C NMR spectroscopy. IBVE afforded polymers with 63–68% dyad isotacticity by polymerization with mixtures of metallocene catalysts and methyl aluminoxane as a cocatalyst in toluene as a solvent. However, TBVE yielded polymers with 47–52% dyad isotacticity (21–28% triad isotacticity) under the same conditions, the isotacticity being lower than that of poly(isobutyl vinyl ether) (PIBVE). Nonmetallocene catalysts, including Ti, Zr, and Hf complexes with two phenoxy imine chelate ligands, provided PIBVE and poly(tert‐butyl vinyl ether) with 63–68 and 45–51% dyad isotacticity, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3938–3943, 2002  相似文献   

8.
The living cationic polymerization of octadecyl vinyl ether (ODVE) was achieved with an 1‐(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3]/EtAlCl2 initiating system in hexane in the presence of an added weak Lewis base at 30 °C. In contrast to conventional polymers, poly(octadecyl vinyl ether) underwent upper‐critical‐solution‐temperature‐type phase separation in various solvents, such as hexane, toluene, CH2Cl2, and tetrahydrofuran, because of the crystallization of octadecyl chains. Amphiphilic block and random copolymers with crystallizable substituents of ODVE and 2‐methoxyethyl vinyl ether (MOVE) were synthesized via living cationic polymerization under similar conditions. Aqueous solutions of the copolymers yielded physical gels upon cooling because of strong interactions between ODVE units, regardless of the copolymer structure. The product gels, however, exhibited different viscoelastic properties: A 20 wt % solution of a block copolymer (400/20 MOVE/ODVE) became a soft physical gel that behaved like a typical gel, whereas the corresponding random copolymer gave a transparent but stiff gel with a certain relaxation time. Differential scanning calorimetry analysis confirmed that the crystalline–amorphous transition of the octadecyl chains was a key step for inducing such physical gelation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1155–1165, 2005  相似文献   

9.
To study the possibility of living cationic polymerization of vinyl ethers with a urethane group, 4‐vinyloxybutyl n‐butylcarbamate ( 1 ) and 4‐vinyloxybutyl phenylcarbamate ( 2 ) were polymerized with the hydrogen chloride/zinc chloride initiating system in methylene chloride solvent at ?30 °C ([monomer]0 = 0.30 M, [HCl]0/[ZnCl2]0 = 5.0/2.0 mM). The polymerization of 1 was very slow and gave only low‐molecular‐weight polymers with a number‐average molecular weight (Mn) of about 2000 even at 100% monomer conversion. The structural analysis of the products showed occurrence of chain‐transfer reactions because of the urethane group of monomer 1 . In contrast, the polymerization of vinyl ether 2 proceeded much faster than 1 and led to high‐molecular‐weight polymers with narrow molecular weight distributions (MWDs ≤ ~1.2) in quantitative yield. The Mn's of the product polymers increased in direct proportion to monomer conversion and continued to increase linearly after sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixture, whereas the MWDs of the polymers remained narrow. These results indicated the formation of living polymer from vinyl ether 2 . The difference of living nature between monomers 1 and 2 was attributable to the difference of the electron‐withdrawing power of the carbamate substituents, namely, n‐butyl for 1 versus phenyl for 2 , of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2960–2972, 2004  相似文献   

10.
Cationic polymerization of 2,3‐dihydrofuran (DHF) and its derivatives was examined using base‐stabilized initiating systems with various Lewis acids. Living cationic polymerization of DHF was achieved using Et1.5AlCl1.5 in toluene in the presence of THF at 0 °C, whereas it has been reported that only less controlled reactions occurred at 0 °C. Monomer‐addition experiments of DHF and the block copolymerization with isobutyl vinyl ether demonstrated the livingness of the DHF polymerization: the number–average molecular weight of the polymers shifted higher with low polydispersity as the polymerization proceeded after the monomer addition. Furthermore, this base‐stabilized cationic polymerization system allowed living polymerization of ethyl 1‐propenyl ether and 4,5‐dihydro‐2‐methylfuran at ?30 and ?78 °C, respectively. In the polymerization of 2,3‐benzofuran, the long‐lived growing species were produced at ?78 °C. The obtained polymers have higher glass transition temperatures compared to poly(acyclic alkyl vinyl ether)s. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4495–4504, 2008  相似文献   

11.
Controlled cationic polymerization of isobutyl vinyl ether was demonstrated to proceed in an ionic liquid (IL), 1‐butyl‐3‐octylimidazolium bis(trifluoromethanesulfonyl)imide, using a 1‐(isobutoxy)ethyl acetate/TiCl4 initiating system, ethyl acetate as an added base, and 2,6‐di‐tert‐butylpyridine as a proton trap reagent. Judicious choices of metal halide catalysts, counteranions of ILs, and additives were essential for controlling the polymerization. The polymerization proceeded much faster in the IL than in CH2Cl2, indicating an increased population of ionic active species in the IL due to the high polarity. Polymers with a relatively narrow molecular weight distribution were obtained in the IL with a bis(trifluoromethanesulfonyl)imide ( ) anion even in the absence of an added base, which suggested possible interactions of the counteranion of the IL with the growing carbocations. Moreover, the direct cationic polymerization of a vinyl ether with pendant imidazolium salts, 1‐(2‐vinyloxyethyl)‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide, proceeded in a homogeneous state in 1‐methyl‐3‐octylimidazolium bis(trifluoromethanesulfonyl)imide. The solubilities of the obtained polymers were readily tuned by counteranion exchange. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1774–1784  相似文献   

12.
Stereoregulation in the cationic polymerization of various alkyl vinyl ethers was investigated with bis[(2,6‐diisopropyl)phenoxy]titanium dichloride ( 1 ; catalyst) in conjunction with the HCl adduct of isobutyl vinyl ether as an initiator in n‐hexane at −78 °C. The tacticities depended on the substituents of the monomers. Isobutyl and isopropyl vinyl ethers gave highly isotactic polymers (mm = 83%), whereas tert‐butyl and n‐butyl vinyl ethers resulted in lower isotactic contents (mm ∼ 50%) similar to those for TiCl4, a conventional Lewis acid, thus indicating that the steric bulkiness of the substituents was not the critical factor in stereoregulation. A statistical analysis revealed that the high isospecificity was achieved not by the chain end but by the catalyst 1 or the counteranion derived therefrom. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1060–1066, 2001  相似文献   

13.
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
For the precision synthesis of primary amino functional polymers, cationic polymerization of a phthalimide‐containing vinyl ether monomer precursor, 2‐vinyloxyethyl phthalimide (PIVE), was examined using a base‐assisting initiating system. Living polymerization of PIVE in CH2Cl2 in the presence of 1,4‐dioxane as an added base yielded nearly monodispersed polymers (Mw/Mn < 1.1) and higher molecular weight polymers, which have never been obtained using other initiating systems. Furthermore, block copolymers with hydrophobic or hydrophilic groups could be prepared. The deprotection of the pendant phthalimide groups gave well‐defined pH‐responsive polymers with pendant primary amino groups. Dual‐stimuli–responsive block copolymers having a pH‐responsive polyamine segment and a thermosensitive segment self‐assembled in water in response to both pH and temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1207–1213, 2010  相似文献   

15.
Living cationic polymerization of fluorine‐containing vinyl ethers [CH2?CH? O? C2H4? O? C3H6? CnF2n+1: 5FVE (n = 2), 13FVE (n = 6)] was investigated in various solvents with a CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5 initiating system in the presence of an added base. 5FVE was polymerized quantitatively in toluene at 0 °C, and the obtained polymers had predetermined molecular weights with narrow molecular weight distributions (Mw/Mn < 1.1). On the other hand, for the polymerization of 13FVE, the product polymers precipitated due to their extremely poor solubility in nonfluorinated organic solvents. Therefore, fluorinated solvents such as hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroethers, or α,α,α‐trifluorotoluene, as‐yet uninvestigated for cationic polymerization, were employed. In these solvents, living polymerization was achieved even with 13FVE, yielding well‐defined polymers (Mw/Mn < 1.1, by size exclusion chromatography using a fluorinated solvent as an eluent). The solvents were also shown to be good for living polymerization of isobutyl vinyl ether. The obtained fluorine‐containing polymers underwent temperature‐responsive solubility transitions in organic solvents. Poly(5FVE) showed sensitive upper critical solution temperature (UCST)‐type phase separation behavior in toluene. Copolymers of 13FVE and isobutyl vinyl ether showed UCST‐type phase separation in common organic solvents with different polarities depending on their composition, while a homopolymer of 13FVE was insoluble in all nonfluorinated organic solvents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Photoinitiated cationic polymerization of mono‐ and bifunctional epoxy monomers, namely cyclohexeneoxide (CHO), 4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexanecarboxylate (EEC), respectively by using sulphonium salts in the presence of hydroxylbutyl vinyl ether (HBVE) was studied. The real‐time FTIR spectroscopic, gel content determination, and thermal characterization studies revealed that both hydroxyl and vinyl ether functionalities of HBVE take part in the polymerization. During the polymerization, HBVE has the ability to react via both active chain end (ACE) and activated monomer mechanisms through its hydroxyl and vinyl ether functionalities, respectively. Thus, more efficient curing was observed with the addition of HBVE into EEC‐containing formulations. It was also demonstrated that HBVE is effective in facilitating the photoinduced crosslinking of monofunctional epoxy monomer, CHO in the absence of a conventional crosslinker. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4914–4920, 2007  相似文献   

17.
Living cationic copolymerization of amide‐functional vinyl ethers with isobutyl vinyl ether (IBVE) was achieved using SnCl4 in the presence of ethyl acetate at 0 °C: the number–average molecular weight of the obtained polymers increased in direct proportion to the monomer conversion with relatively low polydispersity, and the amide‐functional monomer units were introduced almost quantitatively. To optimize the reaction conditions, cationic polymerization of IBVE in the presence of amide compounds, as a model reaction, was also examined using various Lewis acids in dichloromethane. The combination of SnCl4 and ethyl acetate induced living cationic polymerization of IBVE at 0 °C when an amide compound, whose nitrogen is adjacent to a phenyl group, was used. The versatile performance of SnCl4 especially for achieving living cationic polymerization of various polar functional monomers was demonstrated in this study as well as in our previous studies. Thus, the specific properties of the SnCl4 initiating system are discussed by comparing with the EtxAlCl3?x systems from viewpoints of hard and soft acids and bases principle and computational chemistry. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6129–6141, 2008  相似文献   

18.
pH‐Responsive homopolymers and copolymers with naphthoic acid side groups were synthesized via base‐assisting living cationic polymerization. To this end, the feasibility of the living cationic polymerization of ethyl 6‐[2‐(vinyloxy)ethoxy]‐2‐naphthoate (EVEN) was first examined using a base‐assisting initiating system. Et1.5AlCl1.5 as a Lewis acid catalyst induced the living cationic polymerization of EVEN in the presence of ethyl acetate or 1,4‐dioxane in CH2Cl2 at 0 °C. In contrast, the use of naphthoxyethyl vinyl ether (NpOVE), which is a nonsubstituted counterpart, resulted in a poorly controlled polymerization under these conditions. The presence of the carboxy ester was most likely critical in preventing side reactions. A subsequent alkaline hydrolysis of the side‐chain esters quantitatively yielded a carboxy‐containing polymer. Aqueous solutions of this polymer underwent pH‐driven phase separation at pH 7.0. Well‐defined random and block copolymers were also prepared with various functional segments, and their stimuli‐responsive behaviors were investigated in terms of solution transmittance and aggregate size. Block copolymers containing two different pH‐responsive segments formed micelle‐like structures between the two phase‐separated pH values, and dual stimuli‐responsive copolymers containing a pH‐responsive polyacid segment and a thermosensitive segment self‐assembled in the water in response to both the pH and temperature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5239–5247  相似文献   

19.
The anionic ring‐opening polymerization of oxetanes containing hydroxyl groups was carried out with potassium tert‐butoxide as an initiator in the presence of 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding multifunctional hyperbranched polymers: poly(3‐ethyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 2200–4100 in 83–95% yields, and poly(3‐methyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 4600–5200 in 70–95% yields. The synthesized poly(3‐ethyl‐3‐hydroxymethyloxetane)s and poly(3‐methyl‐3‐hydroxymethyloxetane)s were hyperbranched polyethers containing an oxetane moiety and many hydroxy groups at the ends. The postpolymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane)s was performed in the presence of potassium tert‐butoxide and 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding polymers with higher molecular weights in good yields. The cationic polymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane) derivatives was carried out with boron trifluoride etherate as an initiator and was followed by alkaline hydrolysis; this yielded a new branched polymer, a poly(hyperbranched polyether), with many pendant hydroxy groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3739–3750, 2004  相似文献   

20.
A metal‐free, cationic, reversible addition–fragmentation chain‐transfer (RAFT) polymerization was proposed and realized. A series of thiocarbonylthio compounds were used in the presence of a small amount of triflic acid for isobutyl vinyl ether to give polymers with controlled molecular weight of up to 1×105 and narrow molecular‐weight distributions (Mw/Mn<1.1). This “living” or controlled cationic polymerization is applicable to various electron‐rich monomers including vinyl ethers, p‐methoxystyrene, and even p‐hydroxystyrene that possesses an unprotected phenol group. A transformation from cationic to radical RAFT polymerization enables the synthesis of block copolymers between cationically and radically polymerizable monomers, such as vinyl ether and vinyl acetate or methyl acrylate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号