首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 746 毫秒
1.
Hybrid organic/inorganic nanocomposites based on polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals and nylon 6 were prepared via melt mixing. Two structurally and chemically different POSS molecules, a closed cage, nonpolar octaisobutyl POSS (Oib‐POSS) and an open cage, polar trisilanolphenyl POSS (Tsp‐POSS) with differing predicted solubility parameters were evaluated in the nylon matrix. Surface analysis, including quasi‐static and dynamic nanoindentation and nanotribological techniques, revealed exceptional improvements in modulus and hardness along with significant reductions in friction. Additionally, surface wetting characteristics of the nylon were reversed, with POSS incorporation yielding low surface energy, highly hydrophobic surfaces. AFM, TEM/EDAX, spectroscopic techniques and thermomechanical analysis were used to evaluate nanoscale dispersion and bulk properties of the composites. Both POSS molecules exhibit preferential surface segregation behavior in the nylon matrix. Tsp‐POSS, with its higher predicted solubility in nylon, exhibited enhanced dispersion and tribomechanical properties at both nano and bulk scale. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1088–1102, 2009  相似文献   

2.
Thermally induced polymerization of multifunctional methylmethacrylate POSS (MMA‐POSS) was studied in this work for preparation of polymer/POSS nanocomposites. The polymerization of MMA‐POSS could be promoted with benzoyl peroxide (BPO). Self‐assembly of POSS into a layer‐by‐layer structure in the MMA‐POSS polymer (TP‐MMA‐POSS) is observed with a transmission electron microscopy. An ultra‐low‐k value of about 1.85 is measured with TP‐MMA‐POSS. In addition, polyimide‐POSS nanocomposites are also prepared. These nanocomposites demonstrate good homogeneity and enhanced mechanical properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5157–5166, 2008  相似文献   

3.
A new approach to achieve polymer‐mediated gold ferromagnetic nanocomposites in a polyhedral oligomeric silsesquioxane (POSS)‐containing random copolymer matrix has been developed. Stable and narrow distributed gold nanoparticles modified by 3‐mercaptopropylisobutyl POSS to form Au‐POSS nanoparticles are prepared by two‐phase liquid‐liquid method. These Au‐POSS nanoparticles form partial particle aggregation by blending with poly(n‐butyl methacrylate) (PnBMA) homopolymer because of poor miscibility between Au‐POSS and PnBMA polymer matrix. The incorporation the POSS moiety into the PnBMA main chain as a random copolymer matrix displays well‐dispersed gold nanoparticles because the POSS‐POSS interaction enhances miscibility between gold nanoparticles and the PnBMA‐POSS copolymer matrix. This gold‐containing nanocomposite exhibits ferromagnetic phenomenon at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 811–819, 2009  相似文献   

4.
Polyhedral oligomeric silsequioxane (POSS), having eight hydroxyl groups for the preparation of nanocomposites with polyimide (PI) was synthesized by the direct hydrosilylation of allyl alcohol with octasilsesquioxane (Q8M8H) with platinum divinyltetramethyl disiloxane Pt(dvs) as a catalyst. The structure of allyl alcohol terminated‐POSS (POSS‐OH) was confirmed by FTIR, NMR, and XRD. A high performance, low‐k PI nanocomposite from pyromellitic dianhydride (PMDA)‐4,4'‐oxydianiline (ODA) polyamic acid cured with POSS‐OH was also successfully synthesized. The incorporation of POSS‐OH into PI matrix reduced dielectric constant of PI without loosing mechanical properties. Furthermore, the effects of POSS‐OH on the morphology and properties of the PI/POSS‐OH nanocomposites were investigated using UV–vis, FTIR, XRD, SEM, AFM, transmission electron microscope (TEM), TGA, and contact angle. The homogeneous dispersion of POSS particles was confirmed by SEM, AFM, and TEM. The nanoindentation showed that the modulus increased upon increasing the concentration of POSS‐OH in PI, whereas the hardness did not increase very much with respect to loading of POSS, due to soft‐interphase around POSS molecules in the resulting nanocomposites. Overall results demonstrated the nanometer‐level integration of the polymer and POSS‐OH. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5887–5896, 2008  相似文献   

5.
In this study, we investigated the melting and crystallization behavior of polyhedral oligomeric silsesquioxane (POSS)‐capped poly(ε‐caprolactone) PCL with various lengths of PCL chains by means of X‐ray diffraction and differential scanning calorimetry. This organic–inorganic macromolecule possesses a tadpole‐like structure in which the bulky POSS cage is the “head” whereas PCL chain the “tail”. The novel organic–inorganic association result in the significant alterations in the melting and crystallization behavior of PCL. The POSS‐terminated PCL displayed the enhanced equilibrium melting points compared to the control PCL. Both the overall crystallization rate and the spherulitic growth rate of the POSS‐terminated PCLs increased with increasing the concentration of POSS (or with decreasing length of PCL chain in the hybrids). The analysis of Avrami equation shows that the crystallization of the POSS‐terminated PCL preferentially followed the mechanism of spherulitic growth with instantaneous nuclei. It is found that the folding free energy of surface for the POSS‐terminated PCLs decreased with increasing the concentration of POSS. It is found that the folding free energy of surface for the POSS‐terminated PCLs decreased with increasing the concentration of POSS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2201–2214, 2007  相似文献   

6.
We report the synthesis and characterization of novel elastomeric nanocomposites containing polyhedral oligomeric silsesquioxanes (POSS) as both the cross‐linker and filler within a polydimethylsiloxane (PDMS) polymer matrix. These polymer composites were prepared through the reaction of octasilane‐POSS (OS‐POSS) with vinyl‐terminated PDMS chains using hydrosilylation chemistry. In addition, larger super‐POSS cross‐linkers, consisting of two pendant hepta(isobutyl)POSS molecules attached to a central octasilane‐POSS core, were also used in the fabrication of the PDMS composites. The chemical incorporation of these POSS cross‐linkers into the PDMS network was verified by solid‐state 1H magic angle spinning NMR. Based on dynamic mechanical analysis, the PDMS nanocomposites prepared with the octafunctional OS‐POSS cross‐linker exhibited enhanced mechanical properties relative to polymer systems prepared with the tetrafunctional TDSS cross‐linker at equivalent loading levels. The observed improvements in mechanical properties can be attributed to the increased dimensionality of the POSS cross‐linker. The PDMS elastomers synthesized from the larger super‐POSS molecule showed improved mechanical properties relative to both the TDSS and OS‐POSS composites due to the increased volume‐fraction of POSS filler in the polymer matrix. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2589–2596, 2009  相似文献   

7.
Polyethylene (PE)/aluminum (Al) nanocomposites with various filler contents were prepared by a solution compounding method. We investigated the influence of the surface modification of Al nanoparticles on the microstructure and physical properties of the nanocomposites. The silane coupling agent octyl‐trimethoxysilane was shown to significantly increase interfacial compatibility between the polymer phase and Al nanoparticles. Rheological percolation threshold values were determined by analyzing the improvement in storage modulus at low frequencies depending on the Al loadings. Lower percolation threshold values were obtained for the composites prepared with the original nanoparticles than those prepared with the silane‐modified Al nanoparticles. A strong correlation between the time and concentration dependences of dc conductivity and rheological properties was observed in the different nanocomposite systems. The rheological threshold of the composites is smaller than the percolation threshold of electrical conductivity for both of the nanocomposite systems. The difference in percolation threshold is understood in terms of the smaller particle–particle distance required for electrical conduction when compared with that required to impede polymer mobility. It was directly shown by SEM characterization that the nanoparticle surface modification yielded better filler dispersion, as is consistent with our rheological and electrical analysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2143–2154, 2008  相似文献   

8.
The soluble poly(methyl methacrylate‐co‐octavinyl‐polyhedral oligomeric silsesquioxane) (PMMA–POSS) hybrid nanocomposites with improved Tg and high thermal stability were synthesized by common free radical polymerization and characterized using FTIR, high‐resolution 1H NMR, 29Si NMR, GPC, DSC, and TGA. The POSS contents in the nanocomposites were determined based on FTIR spectrum, revealing that it can be effectively adjusted by varying the feed ratio of POSS in the hybrid composites. On the basis of the 1H NMR analysis, the number of the reacted vinyl groups on each POSS molecules was determined to be about 6–8. The DSC and TGA measurements indicated that the hybrid nanocomposites had higher Tg and better thermal properties than the pure PMMA homopolymer. The Tg increase mechanism was investigated using FTIR, displaying that the dipole–dipole interaction between PMMA and POSS also plays very important role to the Tg improvement besides the molecular motion hindrance from the hybrid structure. The thermal stability enhances with increase of POSS content, which is mainly attributed to the incorporation of nanoscale inorganic POSS uniformly dispersed at molecular level. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5308–5317, 2007  相似文献   

9.
Polymer nanocomposites are distinguished by the convergence of length scales corresponding to the radius of gyration of the polymer chains, a dimension of the nanoparticle and the mean distance between the nanoparticles. The consequences of this convergence on the physics of the polymer chains are considered, and some of the outstanding issues and their potential consequences on structure—property relations for polymer nanocomposites are highlighted. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3252–3256, 2007  相似文献   

10.
In this work, we synthesized a novel organic–inorganic semitelechelic polymer from polyhedral oligomeric silsesquioxane (POSS) and poly(acrylate amide) (PAA) via reversible addition‐fragmentation chain transfer (RAFT) polymerization. The organic–inorganic semitelechelic polymers have been characterized by means of nuclear magnetic resonance spectroscopy, thermal gravimetric analysis, and dynamic mechanical thermal analysis. It was found that capping POSS groups to the single ends of PAA chains caused a series of significant changes in the morphologies and thermomechanical properties of the polymer. The organic–inorganic semitelechelics were microphase‐separated; the POSS microdomains were formed via the POSS–POSS interactions. In a selective solvent (e.g., methanol), the organic–inorganic semitelechelics can be self‐assembled into the micelle‐like nanoobjects. Compared to plain PAA, the POSS‐capped PAAs significantly displayed improved surface hydrophobicity as evidenced by the measurements of static contact angles and surface atomic force microscopy. More importantly, the organic–inorganic semitelechelics displayed typical shape memory properties, which was in marked contrast to plain PAA. The shape memory behavior is attributable to the formation of the physically cross‐linked networks from the combination of the POSS–POSS interactions with the intermolecular hydrogen‐bonding interactions in the organic–inorganic semitelechelics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 587–600  相似文献   

11.
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT‐Si) supported catalyst, was developed. MT‐Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT‐Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay–silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 941–949, 2004  相似文献   

12.
Highly porous elastomeric nanocomposites were successfully synthesized through copolymerization of 2‐ethylhexyl acrylate (EHA), divinyl benzene (DVB), and up to 9 mol % of a polyhedral oligomeric silsesquioxane bearing one propylmethacryl group and seven cyclohexyl groups (MACH‐POSS) within the external phase of high internal phase emulsions (HIPE). The chemical structures, morphologies, thermal properties, and mechanical properties of the polyHIPE were investigated. The mechanical loss peak temperature and full width at half maximum increased with increasing MACH‐POSS content. These changes indicate that copolymerization with MACH‐POSS limits segmental mobility and produces compositional distributions on the nanometer scale. At 9 mol % MACH‐POSS, the reduction in segmental mobility produced a glass transition temperature above room temperature and a significant increase in modulus that can be ascribed to the relatively glassy nature of the polymer. Inorganic monoliths with porosities of around 86%, O/Si of about 1.6, and less than 10% carbon were produced on pyrolysis of the nanocomposite polyHIPE. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2357–2366, 2008  相似文献   

13.
The mechanical properties and thermal stability of polymers can be enhanced through the formation of nanocomposites. Nanocomposites consisting of hybrid copolymers of methacrylcyclohexyl polyhedral oligomeric silsesquioxane (POSS‐1) and methyl methacrylate (MMA) with up to 92 wt % (51 mol %) POSS‐1 and with superior thermal properties were synthesized using solution polymerization. The POSS‐1 contents of the copolymers were similar to or slightly higher than those in the feeds, the polydispersity indices were relatively low, and the degree of polymerization decreased with increasing POSS‐1 content. POSS‐1 enhanced the thermal stability, increasing the degradation temperature, reducing the mass loss, and preventing PMMA‐like degradation from propagating along the chain. The mass loss was reduced in a high POSS‐1 content copolymer since the polymerization of POSS‐1 with itself reduced sublimation. Exposure to 450 °C produced cyclohexyl‐POSS‐like remnants in the POSS‐1 monomer and in all the copolymers. The degradation of these remnants, for the copolymers and for the POSS‐1 monomer, yielded 75% SiO2 and an oxidized carbonaceous residue. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4264–4275, 2007  相似文献   

14.
A top‐down approach is applied for the production of polyurethane (PU)–polyhedral oligomeric silsesquioxane (POSS) nanocomposites, namely melt blending. As opposed to the typical chemical incorporation during synthesis, a POSS moiety with two hydroxyl groups is melt blended into a commercial thermoplastic polyurethane with mass fraction up to 2 wt %. POSS disperses in the matrix in submicrometer‐sized crystals, as well as in length scale of few tens of nanometers, in the bulk. Phase separation of the produced composites was studied by both standard dynamic and isothermal annealing experiments. In an approach rare in the literature, the dynamics of phase separation is discussed based on isothermal differential scanning calorimetry curves recorded during annealing. The blended‐in nanoparticles affect the micromorphology in a complicated manner, dependent on the intrinsically complex phase separation mechanism of PU. At higher temperatures, POSS slows down the phase separation, whereas at lower ones, it enhances and accelerates it. POSS decreases the mechanical modulus of the final material, presumably as a result of changes in the microphase separation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1133–1142  相似文献   

15.
Polyurethane/polyhedral oligomeric sisesquioxane (PU/POSS) nanocomposites were syn-thesized via polymerization utilizing the compatibility between POSS nanoparticles and 4,4'-diphenyl methylene diisocyanate. Scanning electron microscope images and Fouriertransform infrared spectra revealed that POSS nanoparticles were dispersed in PU matrix.Thermal gravimetric analysis was employed to investigate the thermal decomposition be-havior of PU/POSS nanocomposites at elevated temperatures. Then fire performance wasevaluated by limiting oxygen index, underwriters laboratories 94 testing and char residue morphology. These results showed that the addition of POSS promoted the formation of char residues which were covered on the surface of polymer composites, leading to the im-provement of thermal stability and flame retardancy.  相似文献   

16.
This review highlights the frontier scientific research in the development of polymer nanocomposites for electrical energy storage applications. Considerable progress has been made over the past several years in the enhancement of the energy densities of the polymer nanocomposites via tuning the chemical structures of ceramic fillers and polymer matrix and engineering the polymer–ceramic interfaces. This article summarizes a range of current approaches to dielectric polymer nanocomposites, including the ferroelectric polymer matrix, increase of the dielectric permittivity using high‐permittivity ceramic fillers and conductive dopants, preparation of uniform composite films based on surface‐functionalized fillers, and utilization of the interfacial coupling effect. Primary attentions have been paid to the dielectric properties at different electric fields and their correlation with film morphology, chemical structure, and filler concentration. This article concludes with a discussion of scientific issues that remain to be addressed as well as recommendations for future research. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1421–1429, 2011  相似文献   

17.
The motivation of this work is to provide reliable and accurate modeling studies of the physical (surface, thermal, mechanical and gas diffusion) properties of chitosan (CS) polymer. Our computational efforts have been devoted to make a comparison of the structural bulk properties of CS with similar type of polymers such as chitin and cellulose through cohesive energy density, solubility parameter, hydrogen bonding, and free volume distribution calculations. Atomistic modeling on CS polymer using molecular mechanics (MM) and molecular dynamics (MD) simulations has been carried out in three dimensionally periodic and effective two dimensionally periodic condensed phases. From the equilibrated structures, surface energies were computed. The equilibrium structure of the films shows an interior region of mass density close to the value in the bulk state. Various components of energetic interactions have been examined in detail to acquire a better insight into the interactions between bulk structure and the film surface. MD simulation (NPT ensemble) has also been used to obtain polymer specific volume as a function of temperature. It is demonstrated that these VT curves can be used to locate the volumetric glass transition temperature (Tg) reliably. The mechanical properties of CS have been obtained using the strain deformation method. Diffusion coefficients of O2, N2, and CO2 gas molecules at 300 K in CS have been estimated. The calculated properties of CS are comparable with the experimental values reported in the literature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1260–1270, 2007  相似文献   

18.
Polyhedral oligosilsequioxane (POSS) tethered aromatic polyamide nanocomposites with various POSS fractions were prepared through Michael addition between maleimide‐containing polyamides and amino‐functionalized POSS. The chemical structures of the polyamide–POSS nanocomposites were characterized with Fourier transform infrared and 1H NMR. The polyamide–POSS nanocomposites exhibited good homogeneity in scanning electron microscopy and transmission electron microscopy observations. POSS modification increased the storage modulus and Young's modulus of the polyamides, slightly decreased their glass‐transition temperatures from 312 to 305 °C, and significantly lowered their dielectric constants from 4.45 to 3.35. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4632–4643, 2006  相似文献   

19.
Nanocomposites composed of a poly(vinylidene fluoride) (PVDF) matrix and 0, 3, 5, and 8 wt % fluoropropyl polyhedral oligomeric silsesquioxane (FP‐POSS) were prepared by using the solvent evaporation method. The morphology and the crystalline phase of the nanocomposites were investigated by digital microscopy, scanning probe microscopy, X‐ray diffractometer, and Fourier transform infrared spectroscopy. FP‐POSS acted as nucleating agent in PVDF matrix. A small content of FP‐POSS resulted in an incomplete nucleation of PVDF and generated bigger spherical particles, whereas higher contents led to a complete nucleation and formed more separate and less‐crosslinked particles. Nanoindentation, nanoscratch, and nanotensile tests were carried out to study the influence of different contents of FP‐POSS on the key static and dynamic mechanical properties of different systems. The nanocomposite with 3 wt % FP‐POSS was found to possess enhanced elastic properties and hardness. However, with the increase of the FP‐POSS content, the elastic modulus and hardness were found to decrease, and the improvement on stiffness was negative at contents of 5 and 8 wt %. Compared with neat PVDF, the scratch resistance of the PVDF/FP‐POSS nanocomposites was decreased due to a rougher surface derived from the bigger spherulites. Nanotensile testing results showed both the stiffness and toughness of PVDF‐FP3% were enhanced and further additions of FP‐POSS brought dramatic enhancements in toughness while associated with a decline in stiffness. Dynamical mechanical properties indicated the viscosity of the nanocomposites increased with the increasing FP‐POSS contents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

20.
In this article, we describe the structure–property relationships between the polyoctahedral oligomeric silsesquioxane (POSS) fillers and the thermomechanical properties of the polymer composites using polystyrene, poly(methyl methacrylate), and ethylene‐(vinyl acetate) copolymer. We used eight kinds of octa‐substituted aliphatic and aromatic POSS as a filler, and homogeneous polymer composites were prepared with various concentrations of these POSS fillers. From a series of measurements of thermal and mechanical properties of the polymer composites, it was summarized that the longer alkyl chains and unsaturated bonds at the side chains in POSS are favorable to improve the thermal stability and the elasticity of polymer matrices. It was found that phenyl‐POSS can show superior ability to improve the thermomechanical properties of conventional polymers used in this study. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5690–5697, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号