首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work we will discuss the solution of an initial value problem of parabolic type. The main objective is to propose an alternative method of solution, one not based on finite difference or finite element or spectral methods. The aim of the present paper is to investigate the application of the Adomian decomposition method for solving the Fokker–Planck equation and some similar equations. This method can successfully be applied to a large class of problems. The Adomian decomposition method needs less work in comparison with the traditional methods. This method decreases considerable volume of calculations. The decomposition procedure of Adomian will be obtained easily without linearizing the problem by implementing the decomposition method rather than the standard methods for the exact solutions. In this approach the solution is found in the form of a convergent series with easily computed components. In this work we are concerned with the application of the decomposition method for the linear and nonlinear Fokker–Planck equation. To give overview of methodology, we have presented several examples in one and two dimensional cases.  相似文献   

2.
本文将改进的变分迭代法的应用范围加以推广,使其应用于多维抛物型方程反问题中。它通过Lagrange乘子进行简便计算求得未知参量的精确值,再应用于多维抛物型方程反问题可以快速得到收敛于反问题精确解的收敛序列,从而得到精确解。同时,通过与Adomian’s分裂法结果比较可知前者比分裂法好。  相似文献   

3.
The purpose of this study is to implement Adomian–Pade (Modified Adomian–Pade) technique, which is a combination of Adomian decomposition method (Modified Adomian decomposition method) and Pade approximation, for solving linear and nonlinear systems of Volterra functional equations. The results obtained by using Adomian–Pade (Modified Adomian–Pade) technique, are compared to those obtained by using Adomian decomposition method (Modified Adomian decomposition method) alone. The numerical results, demonstrate that ADM–PADE (MADM–PADE) technique, gives the approximate solution with faster convergence rate and higher accuracy than using the standard ADM (MADM).  相似文献   

4.
We present an efficient shooting method for solving two point boundary value problems. The Adomian decomposition method will be utilized to obtain a series solution of the initial value problems involved. Numerical examples and comparison of the work of others will also be done.  相似文献   

5.
In this paper, Adomian’s decomposition method is used to solve non-linear differential equations which arise in fluid dynamics. We study basic flow problems of a third grade non-Newtonian fluid between two parallel plates separated by a finite distance. The technique of Adomian decomposition is successfully applied to study the problem of a non-Newtonian plane Couette flow, fully developed plane Poiseuille flow and plane Couette–Poiseuille flow. The results obtained show the reliability and efficiency of this analytical method. Numerical solutions are also obtained by solving non-linear ordinary differential equations using Chebyshev spectral method. We present a comparative study between the analytical solutions and numerical solutions. The analytical results are found to be in good agreement with numerical solutions which reveals the effectiveness and convenience of the Adomian decomposition method.  相似文献   

6.
In this article variational iteration method (VIM), established by He in (1999), is considered to solve nonlinear Bergur’s equation. This method is a powerful tool for solving a large number of problems. Using variational iteration method, it is possible to find the exact solution or a closed approximate solution of a problem. Comparing the results with those of Adomian’s decomposition and finite difference methods reveals significant points. To illustrate the ability and reliability of the method, some examples are provided.  相似文献   

7.
冯再勇  陈宁 《应用数学和力学》2015,36(11):1211-1218
研究了利用Adomian分解求解分数阶微分代数系统的方法.分析了代数约束对Adomian方法求解的影响,指出直接解出代数约束变量,将原系统转化为微分系统进行Adomian分解的困难.提出确定代数变量级数解各分量的新方法,据此进行Adomian分解,得到整个系统的级数解.特别研究了代数约束为线性的分数阶微分代数系统的Adomian解法,证明了各变量间的线性代数约束关系可以转化为相应级数解中各分量的线性关系,从而方便求解,并结合具体例子证明了该方法简便有效.  相似文献   

8.
In this paper, we apply a piecewise finite series as a hybrid analytical-numerical technique for solving some nonlinear systems of ordinary differential equations. The finite series is generated by using the Adomian decomposition method, which is an analytical method that gives the solution based on a power series and has been successfully used in a wide range of problems in applied mathematics. We study the influence of the step size and the truncation order of the piecewise finite series Adomian (PFSA) method on the accuracy of the solutions when applied to nonlinear ODEs. Numerical comparisons between the PFSA method with different time steps and truncation orders against Runge-Kutta type methods are presented. Based on the numerical results we propose a low value truncation order approach with small time step size. The numerical results show that the PFSA method is accurate and easy to implement with the proposed approach.  相似文献   

9.
The aim of this paper is to apply the relatively new Adomian decomposition method to solving the system of linear fractional, in the sense of Riemann-Liouville and Caputo respectively, differential equations. The solutions are expressed in terms of Mittag-Leffler functions of matric argument. The Adomian decomposition method is straightforward, applicable for broader problems and avoids the difficulties in applying integral transforms. As the order is 1, the result here is simplified to that of first order differential equation.  相似文献   

10.
In this paper, a novel method is proposed for solving nonlinear two-point boundary value problems (BVPs). This method is based on a combination of the Adomian decomposition method (ADM) and the reproducing kernel method (RKM). A major advantage of this method over standard ADM is that it can avoid unnecessary computation in determining the unknown parameters. The proposed method can be applied to singular and nonsingular BVPs. Numerical results obtained using the scheme presented here show that the numerical scheme is very effective and convenient for solving nonlinear two-point boundary value problems.  相似文献   

11.
In this paper, Shooting Type Laplace–Adomian Decomposition Algorithm (STLADA), is applied to some boundary value problems with one of the boundary conditions at infinity. The analytic solution obtained by using this method converges rapidly, highly effective in terms of accuracy and very close to the exact solution. The solution is compared with the existing results. Shooting Type Laplace–Adomian Decomposition Algorithm is an efficient method for solving these types of problems occurring especially in fluid mechanics.  相似文献   

12.
In this work, an effective technique for solving a class of singular two point boundary value problems is proposed. This technique is based on the Adomian decomposition method (ADM) and Green’s function. The technique relies on constructing Green’s function before establishing the recursive scheme for the solution components. In contrast to the existing recursive schemes based on ADM, the proposed recursive scheme avoids solving a sequence of nonlinear algebraic or transcendental equations for the undetermined coefficients. The approximate solution is obtained in the form of series with easily calculable components. For the completeness, the convergence and error analysis of the proposed scheme is supplemented. Moreover, the numerical examples are included to demonstrate the accuracy, applicability, and generality of the proposed scheme. The results reveal that the method is very effective, straightforward, and simple.  相似文献   

13.
In this article, we implement a relatively new numerical technique, Adomian’s decomposition method for solving the linear Helmholtz partial differential equations. The method in applied mathematics can be an effective procedure to obtain for the analytic and approximate solutions. A new approach to a linear or nonlinear problems is particularly valuable as a tool for Scientists and Applied Mathematicians, because it provides immediate and visible symbolic terms of analytic solution as well as its numerical approximate solution to both linear and nonlinear problems without linearization [Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston, 1994; J. Math. Anal. Appl. 35 (1988) 501]. It does also not require discretization and consequently massive computation. In this scheme the solution is performed in the form of a convergent power series with easily computable components. This paper will present a numerical comparison with the Adomian decomposition and a conventional finite-difference method. The numerical results demonstrate that the new method is quite accurate and readily implemented.  相似文献   

14.
In this paper, we apply the Adomian decomposition method and Padé-approximate to solving the differential-difference equations (DDEs) for the first time. A simple but typical example is used to illustrate the validity and the great potential of the Adomian decomposition method (ADM) in solving DDEs. Comparisons are made between the results of the proposed method and exact solutions. The results show that ADM is an attractive method in solving the differential-difference equations.  相似文献   

15.
In this paper, we present an efficient numerical algorithm for solving a general class of nonlinear singular boundary value problems. This present algorithm is based on the Adomian decomposition method (ADM) and Green’s function. The method depends on constructing Green’s function before establishing the recursive scheme. In contrast to the existing recursive schemes based on ADM, the proposed numerical algorithm avoids solving a sequence of transcendental equations for the undetermined coefficients. The approximate series solution is calculated in the form of series with easily computable components. Moreover, the convergence analysis and error estimation of the proposed method is given. Furthermore, the numerical examples are included to demonstrate the accuracy, applicability, and generality of the proposed scheme. The numerical results reveal that the proposed method is very effective.  相似文献   

16.
In this paper we propose a new modified recursion scheme for the resolution of multi-order and multi-point boundary value problems for nonlinear ordinary and partial differential equations by the Adomian decomposition method (ADM). Our new approach, including Duan’s convergence parameter, provides a significant computational advantage by allowing for the acceleration of convergence and expansion of the interval of convergence during calculations of the solution components for nonlinear boundary value problems, in particular for such cases when one of the boundary points lies outside the interval of convergence of the usual decomposition series. We utilize the boundary conditions to derive an integral equation before establishing the recursion scheme for the solution components. Thus we can derive a modified recursion scheme without any undetermined coefficients when computing successive solution components, whereas several prior recursion schemes have done so. This modification also avoids solving a sequence of nonlinear algebraic equations for the undetermined coefficients fraught with multiple roots, which is required to complete calculation of the solution by several prior modified recursion schemes using the ADM.  相似文献   

17.
This paper uses the sinc methods to construct a solution of the Laplace’s equation using two solutions of the heat equation. A numerical approximation is obtained with an exponential accuracy. We also present a reliable algorithm of Adomian decomposition method to construct a numerical solution of the Laplace’s equation in the form a rapidly convergence series and not at grid points. Numerical examples are given and comparisons are made to the sinc solution with the Adomian decomposition method. The comparison shows that the Adomian decomposition method is efficient and easy to use.  相似文献   

18.
In this paper, we use modified Adomian decomposition method to solving singular boundary value problems of higher-order ordinary differential equations. The proposed method can be applied to linear and nonlinear problems. The scheme is tested for some examples and the obtained results demonstrate efficiency of the proposed method.  相似文献   

19.
In this paper, we apply the modified variational iteration method (MVIM) for solving the fourth-order boundary value problems. The proposed modification is made by introducing He’s polynomials in the correction functional. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed technique solves nonlinear problems without using the Adomian’s polynomials can be considered as a clear advantage of this algorithm over the decomposition method.  相似文献   

20.
The aim of this paper is to compare the Adomian decomposition method and the homotopy perturbation method for solving the linear and nonlinear seventh order boundary value problems. The approximate solutions of the problems obtained with a small amount of computation in both methods. Two numerical examples have been considered to illustrate the accuracy and implementation of the methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号