首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase behavior of blends of tetramethyl bisphenol-A polyarylate (TMPAr) with various linear aliphatic polyesters characterized by the ratio of aliphatic carbons to ester groups in the repeating unit, CH2/COO = 3 ∼ 9, was examined by differential scanning calorimetry and dynamic mechanical analysis. TMPAr/aliphatic polyester blends prepared by solvent casting were found to be miscible when the CH2/COO ratio of aliphatic polyesters was larger than 4 and up to 9. The thermodynamic interaction parameter, B for the miscible blends was determined by the analysis of the depression of the melting point of polyester using the Hoffman-Weeks method. From the analysis of the heat of mixing data using a binary interaction model, it was concluded that strong unfavorable intramolecular interaction exists between the  CH2 and  COO units in aliphatic polyesters and that four substituted methyl groups produces more favorable effects on the miscibility TMPAr with aliphatic polyesters. © 1998 John Wiley & Sons, Inc. J Polym Sci 36 : 201–212, 1998  相似文献   

2.
A series of new thermoplastic polyesters based on 3,4‐ethylenedioxythiophene (EDOT) with flexible aliphatic spacers have been synthesized and characterized for the first time. The thermal properties of these polyesters based on EDOT are comparable to those of conventional polyesters based on the 1,4‐phenyl unit, indicating that EDOT is a viable replacement for the phenyl units. The glass‐transition and melting‐transition temperatures decrease monotonically with an increase in the spacer length. Theoretical calculations have revealed that the core angle for EDOT is comparable to that of unsubstituted thiophene and hence should be compatible with the formation of the mesophase. This has been confirmed experimentally by the synthesis of a main‐chain, thermotropic, liquid‐crystalline polyester based on EDOT that exhibits fluid birefringence. In fact, this is the first report in which a main‐chain, liquid‐crystalline polymer based on 3,4‐disubstituted thiophene has been successfully designed and synthesized. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3479–3486, 2006  相似文献   

3.
The bulk morphology of poly(1,4‐butadiene)–block–polystyrene–block–poly (ethylene oxide) (PB‐b‐PS‐b‐PEO) and polyethylene–block–polystyrene–block–poly (ethylene oxide) (PE‐b‐PS‐b‐PEO) triblock terpolymers is analyzed under a thermal protocol. This allows the investigation of the morphology during the occurrence of thermal transitions, such as crystallization and melting, which is a neat way of studying the competition between microphase separation and crystallization for the morphology formation. Only one of the studied systems presented a morphological transition upon melting of the PEO and the PE blocks, attributed to the crystallization of the PE block in finite interconnected domains. All the other systems presented no morphological transitions during the thermal scan. The results prove that the crystallization only disrupt the microphases generated in the molten state under very specific circumstances for these block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3197–3206, 2007  相似文献   

4.
Starting from common monounsaturated fatty acids, a strategy is revealed that provides ultra‐long aliphatic α,ω‐difunctional building blocks by a sequence of two scalable catalytic steps that virtually double the chain length of the starting materials. The central double bond of the α,ω‐dicarboxylic fatty acid self‐metathesis products is shifted selectively to the statistically much‐disfavored α,β‐position in a catalytic dynamic isomerizing crystallization approach. “Chain doubling” by a subsequent catalytic olefin metathesis step, which overcomes the low reactivity of this substrates by using waste internal olefins as recyclable co‐reagents, yields ultra‐long‐chain α,ω‐difunctional building blocks of a precise chain length, as demonstrated up to a C48 chain. The unique nature of these structures is reflected by unrivaled melting points (T m=120 °C) of aliphatic polyesters generated from these telechelic monomers, and by their self‐assembly to polyethylene‐like single crystals.  相似文献   

5.
Various phase behavior of blends of poly(vinyl ether)s with polyesters of two types (highly crystalline and less crystalline with different main‐chains) were examined using differential scanning calorimetry (DSC) and optical microscopy (OM). Effects of varying the main‐chain polarity of the constituent polyesters on the phase behavior of the blends were analyzed. Miscibility in PVME/polyester blends was found only in polyesters with backbone CH2/CO ratio = 3.5 to 7.0). Tg‐composition relationships for blends of PVME with highly crystalline polyesters (PBA, PHS) were found to differ significantly from those for PVME blends with less‐crystalline polyesters (PTA, PEAz). Crystallinity of highly crystalline polyester constituents in blends caused significant asymmetry in the Tg‐composition relationships, and induced positive deviation of blends' Tg above linearity; on the other hand, blends of PVME with less crystalline polyesters exhibit typical Fox or Gordon‐Taylor types of relationships. The χ parameters for the miscible blends were found to range from ?0.17 to ?0.33, reflecting generally weak interactions. Phase behavior was analyzed and compared among blends of PVME with rapidly crystallizing vs. less‐crystallizing polyesters, respectively. Effects of polyesters' crystallinity and structures on phase behavior of PVME/polyester blends are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2899–2911, 2007  相似文献   

6.
A series of novel polyesters containing dioxane moieties in their main chains were synthesized by the bulk polycondensation of trans‐2,5‐bis‐(hydroxy‐ methyl)‐1,4‐dioxane with various aliphatic dicarboxylic acid chlorides. The obtained polyesters, analyzed by differential thermal analysis, possessed crystallinity, the melting point of which exhibited a weak odd–even effect on the methylene unit number and a small decreasing trend with an increase in the methylene unit number. These properties were compared with those of similar polyesters bearing cyclohexane moieties, and it was found that the rigidity of the dioxane moiety plays an important role in enhancing the effective packing of the corresponding polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2536–2542, 2000  相似文献   

7.
We have prepared new polyesters containing quadratic, nonlinear optical (NLO) active chromophores covalently incorporated into the main chain. In these polymers, the sequence of the chromophore units along the main chain is rigorously head to tail. All the polyesters are processable, both in the melt and in solution. For one polyester, a full second‐order NLO characterization has been performed. An out‐of‐resonance d33 coefficient of 21 pm/V at 1368 nm has been measured. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2719–2725, 2007  相似文献   

8.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

9.
The unit cell parameters of two alternating poly(ester amide)s constituted by glycolic acid and ω‐amino acid units have been determined by interpretation of X‐ray and electron diffraction patterns. Orthorhombic unit cells containing two chain segments with a nonplanar conformation have been derived. The electron diffraction patterns were rather different from those characteristic of aliphatic polyamides and polyesters with a zig–zag conformation. Chain‐folded lamellar crystals have been obtained by isothermal crystallization of dilute diol or glycerine solutions and the crystalline habit has been studied by means of real space electron microscopy. Polyethylene decoration techniques have been applied to evaluate the regularity of the folding surfaces. Diffraction and morphologic data suggest that hydrogen bonds between amide groups were established along a single direction, which coincides with the preferential crystal growth direction. Spherulites prepared from both evaporation of formic acid solutions and melt crystallization have been also studied. Diffraction data indicate that hydrogen bonds are aligned along the spherulite radius. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 815–825, 2007  相似文献   

10.
Poly(butylene naphthalate) (PBN), poly(diethylene naphthalate) (PDEN), and poly(thiodiethylene naphthalate) (PTDEN) were synthesized and characterized in terms of chemical structure and molecular weight. The polyesters were examined by TGA, DSC, and DMTA. All the polymers showed a good thermal stability, even though depending on chemical structure. At room temperature they appeared as semicrystalline materials; the effect of the introduction along the PBN polymer chain of ether oxygen atoms or sulfur ones was a lowering in the Tg value, a decrement of Tm, and a decrease of the crystallization rate. Changing in chemical structure also affects the main α absorption associated with the glass transition which moves to lower temperature and whose energetic requirements decrease. The results were explained as due to the presence of highly flexible C? S? C or C? O? C bonds in the polymeric chain. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1694–1703, 2007  相似文献   

11.
Poly(propylene/neopenthyl terephthalate) random copolymers (PPT‐PNT) and poly(neopenthyl terephthalate) (PNT) were synthesized and subjected to molecular characterization. Afterwards, the polyesters were examined by TGA, DSC, andX‐ray. The copolymers, which displayed a good thermal stability, at room temperature appeared as semicrystalline materials: the main effect of copolymerization was a lowering in the amount of crystallinity and a decrease of the melting temperature with respect to homopolymer PPT. XRD measurements allowed the identification of the PPT crystalline structure in all cases. Amorphous samples were obtained after melt quenching, with the exception of PPT‐PNT5, and an increment of Tg as the content of NT units is increased was observed due to the effect of the side methylene groups in the polymeric chain. The Wood equation described well Tg‐composition data. Lastly, the presence of a rigid‐amorphous phase was evidenced in the copolymers, whose amount depended on composition and on thermal treatment. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 170–181, 2008  相似文献   

12.
Carbon‐13 spin–lattice relaxation times are measured for poly(octadecyl acrylate) above and below the melting point of the crystalline side chains. The chain backbone has long spin–lattice relaxation times below the melting point that shorten by more than an order of magnitude as the melting point range is traversed. Below the melting point, the backbone is nearly immobilized with spin–lattice relaxation changing very slowly with temperature. Above the melting point, the shorter spin–lattice relaxation times are typical of a rubber above the glass transition and decrease with increasing temperature. The methylene groups in the side chain are quite mobile well below the melting point, indicating fairly rapid anisotropic motion within the crystal. The methyl group at the end of the chain and the adjacent methylene group have longer spin–lattice relaxation times, indicating the greatest side‐chain mobility at the end, which is in the middle of the crystal structure. The side‐chain carbon adjacent to the carbonyl group is as mobile as the majority of the side‐chain carbon, indicating side‐chain mobility extends to all of the side‐chain CH2 groups. The abrupt transition in the mobility of the backbone is not typical of the amorphous phase in a semicrystalline polymer where the backbone units can crystallize. The close proximity of every backbone segment to the crystalline domain locks backbone segmental motion below the melting point. Melting and crystallization of the side chains switch segmental motion of the backbone on and off. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1548–1552, 2001  相似文献   

13.
Novel polyesters from renewable resources based on 2,5‐dicarboxylic acid and several diols were synthesized and characterized using different polycondensation techniques. The aliphatic diols were sufficiently volatile to allow the use of polytransesterifications, which gave high‐molecular weight semicrystalline materials with good thermal stability. In particular, the polyester based on ethylene glycol displayed properties comparable with those of its aromatic counterpart, poly(ethylene terephthalate), namely, the most important industrial polyester. The use of isosorbide gave rise to amorphous polymers with very stiff chains and hence a high glass transition temperature and an enhanced thermal stability. The interfacial polycondensation between the acid dichloride and hydroquinone produced a semicrystalline material with features similar to those of entirely aromatic polyesters, characterized essentially by the absence of melting and poor solubility, both associated with their remarkable chain rigidity. The replacement of hydroquinone with the corresponding benzylic diol was sufficient to provide a more tractable polyester. This study provided ample evidence in favor of the exploitation of furan monomers as renewable alternatives to fossil‐based aromatic homologs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The short chain branching distribution (SCBD) and thermal properties of ethylene/1‐pentene copolymers were studied using SEC‐FTIR and SEC‐HPer DSC. The copolymers, synthesized with Cp2ZrCl2/MAO, were fractionated using size exclusion chromatography (SEC). The infrared analysis of the fractions showed that the copolymers had—on average—higher 1‐pentene concentration in the low molecular weight range. Furthermore, the thermal properties of the SEC deposits of these copolymers on a Germanium disc were studied using high performance differential scanning calorimetry (HPer DSC). Single SEC separations were used to accumulate fractions in the microgram range that were directly analyzed with regard to their thermal properties, thus allowing us to study SCBD as well as thermal behavior simultaneously. When these fractions (with masses ranging from 10–80 μg) were analyzed using HPer DSC, good melting and crystallization temperature distributions were obtained, proving that HPer DSC can be used as a complementary method to SEC‐FTIR. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2956–2965, 2007  相似文献   

15.
Unsaturated groups were introduced into the main chains of poly(butylene succinate) (PBS) by the condensation polymerization of 1,4‐butanediol with succinic acid and maleic acid (MA). The resulting aliphatic polyesters were subjected to chain extension via the unsaturated groups with benzoyl peroxide (BPO), BPO/ethylene glycol dimethacrylate (DF), or BPO/triallyl cyanurate (TF). During the condensation polymerization, some of the cis‐structured maleate was isomerized into the trans‐structured fumarate. The trans‐structured fumarate participated in the chain‐extension reaction with BPO more than the cis‐structured maleate. However, the trans/cis ratio remained practically unchanged when bridging molecules such as DF and TF were used along with BPO. Chain extension of PBS containing 5.7 mol % MA units (PBSM57) resulted in gel formation. Chain extension with BPO/TF made more gels in PBSM57 than chain extension with the other crosslinking agents. Chain extension increased the glass‐transition temperature, decreased the melting temperature and crystallinity, and improved mechanical properties such as elongation and tensile strength. The results of the modified Sturm tests showed that the biodegradability of the unsaturated aliphatic polyesters decreased greatly because of the chain extension. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2240–2246, 2000  相似文献   

16.
The mechanism of adhesion at semicrystalline polymer interfaces between isotactic polypropylene (iPP) and linear low‐density polyethylene (PE) was studied with transmission electron microscopy (TEM) and an asymmetric‐double‐cantilever‐beam test. From the TEM images, both the interfacial width and the lamellar thickness of the polymers were extracted. During annealing, the interfacial width increased with the annealing temperature, and this indicated the accumulation of amorphous polymers at the interface. The interfacial strength, determined from the critical fracture energy (Gc), also increased with the annealing temperature and reached a maximum above the melting temperatures of iPP and PE, whereas the smallest Gc value was obtained below the melting temperatures of the two materials. A mechanism of interfacial strengthening was proposed accounting for the competition between the interdiffusion of PE and crystallization of iPP. As the annealing temperature increased, the rates of PE diffusion and iPP crystallization increased. Although the crystallization of iPP hindered the interdiffusion of PE, both the interfacial width and the fracture energy increased with the temperature, and this indicated that PE interdiffusion dominated iPP crystallization. Below the critical temperature, the fracture surfaces of both iPP and PE were smooth, and chain pullout dominated the fracture mechanism. Above the critical temperature, iPP crystallization still hindered the interdiffusion, and crazes could be seen on the iPP side. Above the melting temperatures of the two materials, ruptured surfaces could also be seen on the PE side, and crazing was the fracture mechanism. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2667–2679, 2004  相似文献   

17.
Herein, a novel approach is reported for the synthesis of medium‐ and long‐chain aliphatic polyethers 2 based on the GaBr3‐catalysed reduction of polyesters 1 with TMDS as the reducing agent. Thus, various linear and branched aliphatic polyesters 1 were prepared and systematically investigated for this reduction strategy, demonstrating the applicability and versatility of this new polyether synthesis protocol. Medium‐ and long‐chain chain polyethers were obtained from the respective polyesters without or with minor chain degradation, whereas short‐chain polyesters, such as poly‐l ‐lactide 1 i and poly[(R)‐3‐hydroxybutanoate] 1 j , showed major chain degradation. In this way, previously unavailable and uncommon polyethers were obtained and studied.  相似文献   

18.
The effect of incorporating a nitro side group into the phenylene units of poly(ethylene terephthalate) (PET) on the conformation and crystallizability of this polyester was evaluated. Random poly(ethylene terephthalate‐co‐nitroterephthalate) (PETNT) copolymers containing 5, 10, and 15 mol % nitroterephthalic units were investigated with reference to PET. All the examined copolymers were semicrystalline and were found to adopt the triclinic crystal structure of PET, with the nitrated units being excluded from the crystallites. Both the crystallinity and crystallization rate of PETNT largely decreased with the content of nitrated units, and the O? CH2? CH2? O trans‐to‐gauche conformational ratio increased with crystallization, attaining comparable values for all the compositions. The conformation and crystallinity of isothermally crystallized PET and PETNT samples could be correlated with the size of the crystallites generated in each case. However, a different crystal perfecting mechanism seemed to operate for PET and for the PETNT copolymers when they were subjected to annealing. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2759–2771, 2002  相似文献   

19.
Thermotropic liquid‐crystalline (LC) semirigid polyesters based on three terphenyl analogues of 1,3,4‐thiadiazole (2,5‐diphenyl‐1,3,4‐thiadiazole)s (DPTD) linking undecamethyleneoxy chain at different substituted positions were synthesized from three disubstituted (4,4′‐, 3,4′‐, and 3,3′‐) dioxydiundecanols of DPTD and four diesters, and the relationships between polymer structures and LC and optical properties were investigated. DSC measurements, texture observations, and wide‐angle X‐ray analyses revealed that the polymers composed of DPTD moiety having a more linear molecular structure and 1,4‐phenylene unit or short aliphatic chain tend to exhibit LC smectic C and/or A phases. The following observations were made: (1) the emergence of smectic C and/or A phases in all the polymers on the basis of 4,4′‐disubstituted DPTD, (2) formation of enantiotropic smectic C and/or A phases in the polymers containing a 1,4‐phenylene unit in the main chain, (3) formation of a more stable smectic C phase in the polymers having a short aliphatic [(CH2)4] chain, and (4) a decrease of the mesomorphic property of the polyesters in the order of 4,4′‐DPTD > 3,4′‐DPTD > 3,3′‐DPTD. Solution and solid‐state ultraviolet–visible and photoluminescent spectra indicated that all the polyesters display maximum absorbances and blue emissions arising from the DPTD moiety, whose peak maxima were shifted to lower wavelengths in the order of 4,4′‐DPTD > 3,4′‐DPTD > 3,3′‐DPTD as well as the aforementioned LC property. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2676–2687, 2003  相似文献   

20.
The design of polymeric biomaterials with long‐lasting X‐ray contrast could advance safe and effective implants and contrast agents. Herein, a new set of wholly aliphatic, iodinated polyesters are synthesized and evaluated as high‐contrast biomaterials and nanoparticle contrast agents for general computed tomography imaging. A single iodinated monomer is used to synthesize a variety of aliphatic polyesters with tunable thermal and mechanical properties. These iodinated polyesters are end‐functionalized with a photocurable methacrylate group, which allows easy processability. The resulting materials exhibit no cytotoxicity and are radiopaque, containing over 40% iodine by weight after processing. The polymers can be formulated into lipid–polymer hybrid nanoparticles using a modified nanoprecipitation method. Initial studies indicate that these nanoparticles show good continual contrast over 60 minutes with no uptake into the kidneys. The work presented here illustrates a novel platform for iodinated polyesters that exhibit high radiopacity and processability, low cost, and no cytotoxicity. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2171–2177  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号