首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The tetradentate Schiff-base ligands, N,N′-bis(salicylidene)-ethylenediamine (Salen), N,N′-bis(salicylidene) butylenediamine (Salbut), and N,N′-bis(salicylidene)-o–phenylenediamine, (sal-o-phen) are very strongly sorbed by cation exchange resin (Dowex-50W) with Fe2+ ions as a counter ion, forming stable complexes. The kinetics of the catalytic decomposition of H2O2 using these complexes was studied in ethanolic medium. The reaction was first-order with salen and sal-o-phen and second-order with salbut with respect to [H2O2]. The rate of the H2O2 decomposition increased either from salen to salbut or from salen to sal-o-phen. Also, the k (per g dry resin) values decreased with increasing both the particle size and the degree of resin cross-linkage. The active species formed at the beginning of the reaction, had an inhibiting effect on the reaction rate. The corresponding activation parameters were calculated from a least-squares fit of the temperature dependence of the rate constant. A reaction mechanism is proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Kinetics and mechanism of oxidation of β‐alanine by peroxomonosulfate (PMS) in the presence of Cu(II) ion at pH 4.2 (acetic acid/sodium acetate) has been studied. Autocatalysis was observed only in the presence of copper(II) ion, and this was explained due to the formation of hydroperoxide intermediate. The rate constant for the catalyzed (k) and uncatalyzed (k) reaction has been calculated. The kinetic data obtained reveal that both the reactions are first order with respect to [PMS]. k values initially increase with the increase in [β‐alanine] and reach a limiting value, but k values decrease with the increase in [β‐alanine]. k values increase linearly with the increase in [Cu(II)], whereas k values increase with [Cu(II)]2. Furthermore, k values are independent of [acetate], but k values decrease with the increase in acetate. A suitable mechanism has been proposed to explain the experimental observation. The reaction has been studied at different temperatures, and the activation parameters are calculated. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 40: 44–49, 2008  相似文献   

4.
Monomeric and Polymeric Dimethylaminothiosquarato Complexes: The Crystal Structures of Nickel(II), Cobalt(II), Silver(I), Platinum(II), Gold(I), Mercury(II) and Lead(II) Dimethylaminothiosquarates The ligand 2‐dimethylamino‐3, 4‐dioxo‐cyclobut‐1‐en‐thiolate, Me2N‐C4O2S (L) forms neutral and anionic complexes with nickel(II), cobalt(II)‐, silver(I)‐, platinum(II)‐, gold(I)‐, mercury(II)‐ and lead(II). According to the crystal structures of seven complexes the ligand is O, S‐chelating in [Ni(L)2(H2O)2]·2 H2O, [Co(L)2(CH3OH)2] and (with limitations) in [Pb(L)2·DMF]. In the remaining compounds the ligand behaves essentially as a thiolate ligand. The platinum, gold and mercury complexes [TMA]2[Pt(L)4], [TMA] [Au(L)2] and [Hg(L)2] are monomeric. In [TMA][Ag2(L)3]·5.5 H2O a chain‐like structure was found. In the asymmetric unit of this structure eight silver ions, with mutual distances in the range 2.8949(4) to 3.1660(3)Å, are coordinated by twelve thiosquarato ligands. [Pb(L)2·DMF] has also a polymeric structure. It contains a core of edge‐bridged, irregular PbS4 polyhedra. TMA[Au(H2NC4O2S)2] has also been prepared and its structure elucidated.  相似文献   

5.
Hydrogen Bonds in 1,1‐Bis(2‐hydroxyethyl)‐3‐benzoylthiourea and its Nickel(II)‐ and Copper(II)‐Chelate Complexes The ligand 1,1‐bis(2‐hydroxyethyl)‐3‐benzoylthiourea HL, ( 1 ), yields with nickel(II) and copper(II) ions neutral complexes [NiL2], ( 2 ), and [CuL2], ( 3 ). By X‐ray structure analysis and IR spectroscopy different intramolecular hydrogen bonds (OH…O) and (OH…N) could be identified in both equally coordinated ligands of the [NiL2] molecule. For comparison X‐ray and IR data were also estimated for 1 and 3 .  相似文献   

6.
Polymerizations of 1,3‐dienes using in situ generated catalyst [(2‐methallyl)Ni][B(ArF)4], 6 , (ArF = 3,5‐bis(trifluoromethyl)phenyl) as well as [(2‐methallyl)Ni(mes)][B(ArF)4], 14 , (mes = mesitylene) are reported. Highly sensitive complex 6 polymerizes butadiene (BD) at –30 °C to yield polybutadiene with a Mn of ca. 10 K and 94% cis‐1,4‐enchainment while less reactive isoprene (IP) was polymerized at 23 °C to yield polyisoprene with Mn ca. 7 K. Complex 6 was also shown to polymerize a functionalized diene, 2,3‐bis(4‐trifluoroethoxy‐4‐oxobutyl)‐1,3‐BD, to polymer with Mn = 113 K. The stable and readily isolated arene complex 14 initiates BD and IP polymerizations at somewhat higher temperatures relative to 6 and delivers polymers with higher molecular weights. Complex [(allyl)Ni(mes)][B(ArF)4], 13 , catalyzes polymerization of styrene to yield polystyrene with high conversion, Mn's = ca. 6 K and MWD = 2. The π‐benzyl complex [(η3‐1‐methylbenzyl)Ni(mes)] [B(ArF)4], 19 , was detected as an intermediate following chain transfer by in situ NMR studies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1901–1912, 2010  相似文献   

7.
Complexes with Macrocyclic Ligands. IV. Heterodinuclear Cobalt(II), Nickel(II), Copper(II), Zinc(II) and Palladium(II) Complexes with a Macrocyclic Ligand of Schiff‐Base Type: Syntheses and Structures The synthesis and properties of nickel(II), copper(II), and palladium(II) complexes, [MLPh] ( 3 ; LPh = N,N′‐phenylene‐bis(3‐formyl‐5‐tert.‐butyl‐salicylaldimine)), are described. These neutral mononuclear complexes react with metal(II) perchlorate and 1,3‐propylenediamine to form heterodinuclear, macrocyclic, cationic complexes of the type [MM′(LPh,3)]2+ ( 4 ; M = Ni, Cu, Pd; M′ = Co, Cu, Zn). The structures of the five new compounds [NiCo(LPh,3)](ClO4)2, [NiCu(LPh,3)](ClO4)2, [CuCu(LPh,3)](ClO4)2, [CuZn(LPh,3)](ClO4)2, and [PdCu(LPh,3)](ClO4)2 were determined by X‐ray diffraction.  相似文献   

8.
Two 2‐Py‐amidine ligands (2‐Py―NH―C(Ph)═N―Ar, Ar = 2,6‐Me2C6H3 and 2,6‐iPr2C6H3) and the corresponding Ni(II) complexes ( 1 and 2 ) were synthesized and characterized using elemental analysis and FT‐IR, UV–visible, 1H NMR and 13C NMR spectroscopies. X‐ray crystal structures indicate that the chelate ring conformation of the less bulky complex 1 is relatively planar compared with that of the bulky complex 2 . Paramagnetic 1H NMR and 13C NMR studies show that, in solution, the time‐average structures of complexes 1 and 2 have mirror symmetry. Both complexes 1 and 2 were used as catalyst precursors for norbornene polymerization with methylaluminoxane as a co‐catalyst. The effects of Al/Ni ratio, temperature and structure of precursors on the catalytic performance were investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
合成了四种齐聚噻吩衍生物:5,5"-二氰基-2,2’:5’,2"-三噻吩 (DCN3T), 5,5"’-二氰基-2,2’:5’,2":5",2"’-四噻吩 (DCN4T), 5,5"’-甲氧基-2,2’:5’,2":5",2"’-四噻吩(DMO4T) 和 4,4"-二羧基-5,5"-二丙基-2,2’:5’,2"-三噻吩 (BP3T-DCOOH),研究了它们的电致变色性质,研究结果发现,这四种齐聚噻吩衍生物膜在电场作用下,可以发生可逆的颜色变化。  相似文献   

10.
We report that Ni(COD)(DQ) (COD=1,5‐cyclooctadiene, DQ=duroquinone), an air‐stable 18‐electron complex originally described by Schrauzer in 1962, is a competent precatalyst for a variety of nickel‐catalyzed synthetic methods from the literature. Due to its apparent stability, use of Ni(COD)(DQ) as a precatalyst allows reactions to be conveniently performed without use of an inert‐atmosphere glovebox, as demonstrated across several case studies.  相似文献   

11.
Nickel(II) and palladium(II) complexes of monodentate aminophosphine ligands were prepared and characterized. In ethylene oligomerization and subsequent Friedel–Crafts alkylation of toluene, the Ni(II) complexes Ni‐1 and Ni‐2 were activated with aluminium co‐catalysts and generated tandem catalysts with high activities (up to 1.1 × 106 g (mol Ni)?1 h?1) which are comparable with those of previously reported bidentate Ni(II) catalysts. The Pd(II) precatalyst Pd‐1 showed high activities (up to 2.0 × 105 g (mol Pd)?1 h?1) in the polymerization of norbornene.  相似文献   

12.
Silver triflate [AgOTf] assisted de‐bromination gives [Ni(dppm/dppe/(PPh3)2) (OTf)2], which on reaction with 4,4′‐bpy and gold(I) phosphines in dichloromethane medium by the self assemble technique leads to [{(L)Ni}{(4,4‐bpy)Au(PPh3)}2](OTf)4, ( 1,2,3 ) [{(L)Ni(4,4‐bpy)}4](OTf)8, ( 4,5,6 ) [L = dppm/dppe/(PPh3)2 = diphenyl phosphino‐methane, ‐ethane, bis‐triphenylphosphine, OSO2CF3 is the triflate anion]. The maximum molecular peak of the corresponding molecule is observed in the ESI mass spectrum. Ir spectra of the complexes show ‐C=C‐, ‐C=N‐, as well as phosphine stretching. The 1H NMR spectra as well as 31P (1H)NMR suggest solution stereochemistry, proton movement, and phosphorus proton interaction. Considering all the moieties, there are a lot of carbon atoms in the molecule reflected by the 13C NMR spectrum. In the 1H‐1H COSY spectrum of the present complexes and contour peaks in the 1H?13C HMQC spectrum, we assign the solution structure and stereoretentive transformation in each step.  相似文献   

13.
14.
Summary The tetradentateSchiff bases N,N-bis(salicylidene) ethylenediamine (salen), N,N-bis-(salicylidene) hexylenediamine (salhex), and N,N-bis(salicylidene)-o-phenylenediamine (sal-o-phen) are very strongly adsorbed by cation exchange resins (Dowex-50W) with manganese(II) as a counter ion, forming stable complexes. The kinetics of the catalytic decomposition of H2O2 in presence of these complexes has been studied in aqueous medium. The decomposition reaction is first order with respect to H2O2 in the case ofsalen andsal-o-phen and third order in the case ofsalhex. The greater the ligand methylene chain length or the greater the steric effect of the ligand, the greater will be the rate of reaction. The reaction is governed by the entropy of activation. A reaction mechanism is proposed.
Kinetik und Mechanismus der von Mn(II)-bis-Salicylaldimin — Komplexen katalysierten Zersetzung von Wasserstoffperoxid
Zusammenfassung Die teradentatenSchiffschen Basen N,N-bis-Salicyliden-ethylendiamin (salen), N,N-bis-Salicyliden-Hexylendiamin (salhex) und N,N-bis-Salicyliden-o-phenylendiamin (sal-o-phen) werden von Kationenaustauschen (Dowex-50W) mit Mangan(II) als Gegenion unter der Bildung stabiler Komplexe adsorbiert. Die Kinetik der katalytischen Zersetzung von H2O2 in Gegenwart dieser Komplexe wurde in wäßrigem Medium untersucht. Die Zersetzungsreaktion ist erster Ordnung bezüglich H2O2 in den Fällensalen undsal-o-phen und dritter Ordnung im Fall vonsalhex. Die Reaktionsgeschwindigkeit steigt mit der Länge der Methylenkette des Liganden und mit dessen Raumbedarf und wird von der Aktivierungsentropie bestimmt. Ein Reaktionsmechanismus wird vorgeschlagen.
  相似文献   

15.
Two zinc(II) and nickel(II) based coordination polymers, {[Zn(bibp)(MoO4)](H2O)2}n ( 1 ) [bibp = 4,4′‐bis(imidazol‐1‐yl)‐biphenyl] and [Ni2(CN)4(phen)2]n ( 2 ) (phen = 1,10‐phenanthroline), were synthesized and structurally characterized under solvothermal conditions. Compound 1 can be viewed as the connection of the 1D W‐type chain [Zn(trans‐bibp)] with the MoO42– anion to form a uninodal 4‐connected net, whereas 2 features one‐dimensional NiII cyanide chains decorated either with linear Ni(CN)4 side chains or with 1,10‐phenanthroline ligands bound directly to the NiII sites of the parent chain. In addition, in vitro anticancer activities of compounds 1 and 2 on four human breast cancer cells (MDA‐MB‐231, MDA‐MB‐468, SK‐BR‐3, and MCF7) was further determined.  相似文献   

16.
Gas‐phase C―C coupling reactions mediated by Ni (II) complexes were studied using a linear quadrupole ion trap mass spectrometer. Ternary nickel cationic carboxylate complexes, [(phen)Ni (OOCR1)]+ (where phen = 1,10‐phenanthroline), were formed by electrospray ionization. Upon collision‐induced dissociation (CID), they extrude CO2 forming the organometallic cation [(phen)Ni(R1)]+, which undergoes gas‐phase ion‐molecule reactions (IMR) with acetate esters CH3COOR2 to yield the acetate complex [(phen)Ni (OOCCH3)]+ and a C―C coupling product R1‐R2. These Ni(II)/phenanthroline‐mediated coupling reactions can be performed with a variety of carbon substituents R1 and R2 (sp3, sp2, or aromatic), some of them functionalized. Reaction rates do not seem to be strongly dependent on the nature of the substituents, as sp3sp3 or sp2sp2 coupling reactions proceed rapidly. Experimental results are supported by density functional theory calculations, which provide insights into the energetics associated with the C―C bond coupling step.  相似文献   

17.
Atmospheric ethylene reactions were studied with backbone fluorinated β‐diketiminato Ni(II) complexes CH{C(CF3)NAr}2NiBr (1, Ar = 2,6‐Me2C6H3, and 2 2,6‐iPr2C6H3) activated by methylaluminoxane (MAO). The catalytic systems exhibit the characteristics of catalyzing simultaneously polymerization and oligomerization of ethylene, indicating different active species involved in the reaction system. In an effort to investigate the alkylation species involved in the β‐diketiminato nickel (II)/MAO system, the reaction of 1 with methylaluminoxane were studied. With 19F{1H NMR} spectra, two sets of new signals different from 1 were presented. Two alkylation products were proposed precursors of active species for producing oligomer and polymer of ethylene in the β‐diketiminato Ni(II)/MAO system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Ligand Behaviour of P‐functional Organotin Halides: Nickel(II), Palladium(II), and Platinum(II) Complexes with Me2(Cl)SnCH2CH2PPh2 Me2(Cl)SnCH2CH2PPh2 ( 1 ) reacts with NiII, PdII, and PtII halides in molar ratio 2 : 1 forming the complexes [MX2{PPh2CH2CH2Sn(Cl)Me2}2] (M = Ni, Pd, Pt; X = Cl, Br) ( 3 – 6 , 9 , 10 ) ( 7 , 8 : M = Ni; Br instead of Cl). The nickel complexes were isolated and characterized both as the planar ( 3 , 5 , 7 ) and the tetrahedral ( 4 , 6 , 8 ) isomer. Crystal structure analyses and NMR data indicate for the planar nickel complexes 3 , 5 , 7 and [MCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 : M = Pd; 10 : M = Pt) the existence of intra and intermolecular M–Hal…Sn bridges. In a ligand : metal molar ratio of 3 : 1 the complexes [MéCl{PPh2CH2CH2SnCl2Me2}{PPh2CH2CH2Sn(Cl)Me2}2] ( 11 : M = Pd; 12 : M = Pt) are formed which represent intramolecular ion pairs. By dehalogenation of [PdCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 ) with sodium amalgam and graphite potassium (C8K), respectively, the palladacycles cis‐[Pd{PPh2CH2CH2SnMe2}2] ( 13 ) and trans‐[Pd(Cl)PPh2CH2CH2SnMe2{PPh2CH2CH2Sn(Cl)Me2}] ( 14 ) are formed. From the compounds 1 , 3 , 9 , 11 , and 12 the crystal structures are determined. All compounds are characterized by 1H, 31P, and 119Sn NMR spectroscopy.  相似文献   

19.
New nickel‐based complexes of 1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene (dpp‐bian) with BF4? counterion or halide co‐ligands were synthesized in THF and MeCN. The nickel(I) complexes were obtained by using two approaches: 1) electrochemical reduction of the corresponding nickel(II) precursors; and 2) a chemical comproportionation reaction. The structural features and redox properties of these complexes were investigated by using single‐crystal X‐ray diffraction (XRD), cyclic voltammetry (CV), and electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. The influence of temperature and solvent on the structure of the nickel(I) complexes was studied in detail, and an uncommon reversible solvent‐induced monomer/dimer transformation was observed. In the case of the fluoride complex, the unpaired electron was found to be localized on the dpp‐bian ligand, whereas all of the other nickel complexes contained neutral dpp‐bian moieties.  相似文献   

20.
In the absence of any special luminescence reagent, emission of weak chemiluminescence has been observed during the decomposition of hydrogen peroxide catalyzed by copper(II) in basic aqueous solution. The intensity of the chemiluminescence was greatly enhanced by addition of DNA and was strongly dependent on DNA concentration. Based on these phenomena, a flow-injection chemiluminescence method was established for determination of DNA. The chemiluminescence intensity was linear with DNA concentration in the range 2×10–7–1×10–5 g L–1 and the detection limit was 4.1×10–8 g L–1 (S/N=3). The relative standard deviation was less than 3.0% for 4×10–7 g L–1 DNA (n=11). The proposed method was satisfactorily applied for determination of DNA in synthetic samples. The possible mechanism of the CL reaction is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号