首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel conjugated polymers containing 3,9‐ or 2,9‐linked carbazole units in the main chain were synthesized by the polycondensation of ethynyl‐ and iodo‐substituted 9‐arylenecarbazolylene monomers, and their optical and electrical properties were studied. Polymers with weight‐average molecular weights of 3400–12,000 were obtained in 76–99% yields by the Sonogashira coupling polycondensation in piperidine or tetrahydrofuran (THF)/piperidine at 30 °C for 48 h. All the 3,9‐linked polymers absorbed light around 300 nm. The para‐phenylene‐linked polymer also absorbed light around 350 nm, while meta‐phenylene‐linked one did not. The 3,9‐linked polymers absorbed light at a wavelength longer than the 2,9‐linked one. The polymers emitted blue fluorescence with high quantum yields (0.21–0.78) upon excitation at the absorption maxima. The polymers were oxidized around 0.6 V, and reduced around 0.5 V. Poly( 1 ) showed the dark conductivity of 3.7 × 10?11 S/cm (103 V/cm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3506–3517, 2009  相似文献   

2.
We have synthesized two conjugated polymers ( P1 , P2 ) containing alternating electron‐donating and ‐accepting units, based on N‐alkyl‐2,7‐carbazole, 4,7‐di(thiophen‐5‐yl)‐2,1,3‐benzothiadiazole and 3‐[2‐(4‐pyridyl)vinyl]thiophene units. These conjugated polymers contained different contents of pyridine units, which were incorporated to form hydrogen bonds with [6,6]‐phenyl‐C61‐butyric acid (PCBA). When these hydrogen bonding interactions were present in the polymer thin films, their thermal stability improved; deterioration, which occurred through aggregation of PCBA methyl ester after lengthy annealing times, was also suppressed. The power conversion efficiency of a device incorporating the film featuring hydrogen bonding interactions remained at 75% of the original value after thermal annealing for 5 h at 140 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A new diiodo monomer containing heterocyclic pyridine and carbazole groups was synthesized via Chichibabin reaction and used in the preparation of a conjugated polymer via Suzuki coupling approach. The conjugated polymer was highly soluble in common organic solvents such as NMP, THF, dichloromethane, chloroform, toluene, xylene, and benzene at room temperature. The polymer had high glass transition temperature at 191 °C and Td10 at 434 °C in nitrogen atmosphere. The pristine polymer exhibited the UV–vis maximum absorption at 355 nm and shifted to 420 nm after protonation. The emission of the polymer in THF solution changed from the blue region with maximum peak at 400 nm to the yellow region with maximum peak at 540 nm after protonated by HCl, and the intensity of emission depended on the concentration of acid. The polymer also showed electrochromic behavior under applied voltage. The emission color of the polymer film changed from blue (435 nm) to yellow (570 nm) when 2.5 V bias voltage was applied. The polymer also exhibited write‐once and read‐many‐times (WORM) polymer memory effect with tristable states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 991–1002, 2009  相似文献   

4.
A series of three new low bandgap donor–acceptor–donor–acceptor/ (D–A–D–A/) polymers have been successfully synthesized based on the combination of isoindigo as the electron‐deficient acceptor and 3,4‐ethylenedioxythiophene as the electron‐rich donor, followed by CH‐arylation with different acceptors (4,7‐dibromo[c][1,2,5]‐(oxa, thia, and/or selena)diazole ( 4a‐c )). These polymers were used as donor materials for photovoltaic applications. All of the polymers are highly stable and show good solubility in chlorinated solvents. The highest power conversion efficiency of 1.6% was achieved in the bulk heterojunction photovoltaic device that consisted of poly ((E)?6‐(7‐(benzo‐[c][1,2,5]‐thiadiazol‐4‐yl)?2,3‐dihydrothieno‐[3,4‐b][1,4]dioxin‐5‐yl)?6′‐(2,3‐dihydrothieno‐[3,4‐b][1,4]‐dioxin‐5‐yl)?1,1′‐bis‐(2‐octyldodecyl)‐[3,3′‐biindolinylidene]‐2,2′‐dione) as the donor and PC61BM as the acceptor, with a short‐circuit current density (Jsc) of 8.10 mA/cm2, an open circuit voltage (Voc) of 0.56 V and a fill factor of 35%, which indicates that these polymers are promising donors for polymer solar cell applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2926–2933  相似文献   

5.
This article describes the synthesis and characterization of a new ladder‐type poly (p‐phenylene) (LPFC) containing alkylcarbazole and dialkylfluorene units in backbone, and its optical and electrochemical properties as well as its light‐emitting device performance. LPFC shows the well‐defined structure, high molecular weights, excellent thermal stability, and good solubility in common organic solvents. And it also shows strongly blue emission (λmax = 465 nm) with quantum efficiency of 70% in solution, while its solid emission (λmax = 470 nm) is almost the same as its solution. Electrochemical studies show that the highest occupied molecular orbital (HOMO) energy levels of LPFC is up to 5.29 eV, which is significantly higher than that of LPPP without carbazole in backbone, indicating an enhanced ability of hole injection from anodes. Furthermore, the single layer light‐emitting device using LPFC as the active layer shows blue emission (λmax = 470 nm) with maximum luminescence of ~ 2000 cd/m2 and maximum luminance efficiency of 0.43 cd/A. The attractive properties exhibited from new ladder‐type polymer establish LPFC as a good candidate for the potential application as transporting and emitting layer in polymeric light emitting diodes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3120–3127, 2008  相似文献   

6.
7.
An optically active, m‐terphenyl‐based π‐conjugated polymer bearing carboxy groups was synthesized by the copolymerization of the diethynyl monomer bearing a carboxy group with (S,S)‐2,5‐bis(2‐methylbutoxy)‐1,4‐dibromobenzene using Sonogashira reaction. The copolymer showed a weak circular dichroism (CD) in the main‐chain chromophore region due to a homo‐double helix formation with an excess helical handedness biased by the chiral alkoxy substituents through self‐association. However, upon complexation with achiral amines, such as piperidine, the CD intensity of the polymer significantly increased resulting in the formation of a greater excess one‐handed homo‐double helix via hydrogen‐bonded inclusion complexation with the achiral amines between each strand, leading to the amplification of the helicity. A preferred‐handed homo‐double helix was also induced in the polymer in the presence of nonracemic amines. The effect of the achiral and chiral amines on the homo‐double helix formation was investigated by comparing the CD spectra of the polymer to those of its model dimer. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 990–999  相似文献   

8.
We have synthesized a narrow‐bandgap conjugated polymer ( PCTDPP ) containing alternating cyclopentadithiophene (CT) and diketo‐pyrrolo‐pyrrole (DPP) units by Suzuki coupling. This PCTDPP exhibits a low band gap of 1.31 eV and a broad absorption band from 350 to 1000 nm, which allows it to absorb more available photons from sunlight. A bulk heterojunction polymer solar cell incorporating PCTDPP and C70 at a blend ratio of 1:3 exhibited a high short‐circuit current of 10.87 mA/cm2 and a power conversion efficiency of 2.27%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1669–1675, 2010  相似文献   

9.
A benzoxazine compound (FDP‐FBz), which possesses a fluorene group and two terminal furan groups, and its corresponding cross‐linked polymer (CR‐FDP‐FBz) have been prepared using 4,4′‐(9‐fluorenylidene)diphenol (FDP), furfurylamine, and formaldehyde as precursors. The chemical structure of FDP‐FBz has been characterized with Fourier‐transform infrared and 1H nuclear magnetic resonance spectroscopies. FDP‐FBz displays a melting point at about 173 °C and a processing window of 52 °C as well as good solubility in common organic solvents. As a result, FDP‐FBz can be fabricated in both molten and solution processes. Under an excitation at 365 nm, FDP‐FBz exhibits a photoluminescent (PL) emission at about 445 nm. The PL intensity of FDP‐FBz is as high as sixfolds of the intensity recorded with FDP. CR‐FDP‐FBz displays a glass transition temperature of 215 °C, a high storage modulus of 3.1 GPa, a 10% weight loss at 384 °C, and a high char yield of 56 wt % (900 °C, in nitrogen). Moreover, CR‐FDP‐FBz has a high refractive index of about 1.65 as a result of incorporating fluorene groups to its structure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4020–4026, 2010  相似文献   

10.
The recording of polarization gratings in films of a cholesteric liquid crystalline polymer with different helix pitch was studied in detail. For this purpose, the cholesteric mixture of the nematic azobenzene‐containing copolymer with a chiral‐photochromic dopant was prepared. The utilization of such mixture has made possible to realize dual optical photorecording in one system, first due to the phototuning of the helix pitch by UV light and second the polarization grating recording process by exposure with polarized visible light. The diffraction efficiency strongly depends on the cholesteric helix pitch and films thickness: the increase of the confinement ratio d/p (where d, film thickness; p, helix pitch) results in growth of the diffraction efficiency. Comparison of the induction of polarization gratings in cholesteric, nematic (copolymer without chiral dopant), and amorphous (nonannealed) cholesteric films revealed that only the cholesteric films were characterized by significant oscillations in the diffraction efficiency signal as well as by the presence of the maximum in the first‐order diffraction efficiency in the initial stage of the grating recording process. It was found that in addition to the polarization grating surface relief gratings (SRGs) were also formed in the studied systems, however, the amplitude of the SRG inscribed in the cholesteric films was lower (~20 nm) compared to the grating amplitude obtained in nematic films (~60 nm). Moreover, increasing helix pitch resulted in a decrease of the SRG amplitude. The obtained experimental data demonstrate the great potential of cholesteric LC mixtures of such type for different applications as photoactive materials for photonics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 773–781  相似文献   

11.
An oligonucleotide of triazole‐linked RNA (TLRNA) was synthesized by performing consecutive copper‐catalyzed azide‐alkyne cycloaddition reactions for elongation. The reaction conditions that had been optimized for the synthesis of 3‐mer TLRNA were found to be inappropriate for longer oligonucleotides, and the conditions were reoptimized for the solid‐phase synthesis of an 11‐mer TLRNA oligonucleotide. Duplex formation of the 11‐mer TLRNA oligonucleotide was examined with the complementary oligonucleotide of natural RNA to reveal the effects of the 2′‐OH groups on the duplex stability.  相似文献   

12.
New π–conjugated polypyrroles such as poly(3‐heptyl‐N‐(t‐butoxycarbonyl)pyrrole‐2,5‐diyl), PPr(3‐Hep; N‐BOC) , and poly(N‐(phenylethynyl)pyrrole‐2,5‐diyl‐alt‐thiophene‐2,5‐diyl), Copoly‐2 , were prepared by organometallic polycondensations using the corresponding 2.5‐dihalopyrroles as the starting materials. Deprotection of the BOC group of PPr(3‐Hep; N‐BOC) proceeded at 185 °C to give poly(3‐heptylpyrrole). XRD (X‐ray diffraction) data of Copoly‐2 indicated that Copoly‐2 assumed a stacked structure in the solid. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6223–6232, 2005  相似文献   

13.
With anodic alumina with an ordered nanopore array used as a template, poly[2‐metoxy‐5‐(2′‐ethyl‐hexyloxy)‐p‐phenylene vinylene] (MEH–PPV) was embedded into the nanopores, and then two‐dimensional arrays of light‐emitting nanopolymers were prepared. By the measurement and analysis of photoluminescence and photoluminescence excitation spectra of the samples, it was demonstrated that the optical properties of the nano‐MEH–PPV arrays were obviously different from those of MEH–PPV films. The conformations of the MEH–PPV chains in the nanopores, films, and solutions and their effects on the optical properties were examined. It was determined experimentally that the conformations of the MEH–PPV chains in the solutions were maintained in the nano‐MEH–PPV arrays. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3037–3041, 2006  相似文献   

14.
Copolyamides based on poly(m-phenylene isophthalamide) and poly-(p-phenylene terephthalamide), to which 1,6-diaminohexane units were regularly inserted every 3 or 5 phenylene monomer units, were synthesized. The copolymers were obtained by condensation of individually prepared diamino- and dicarboxylic-building blocks via the Yamazaki–;Higashi reaction. Solubility of the copolyamides are discussed in relation with the structure. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2379–2386, 1997  相似文献   

15.
A series of solution‐processable electrochromic (EC) aromatic polyamides with bis(triphenylamine)ether (TPAO) units in the backbone were prepared by the phosphorylation polyamidation from a newly synthesized diamine monomer, bis(N‐4‐aminophenyl‐N‐4‐methoxyphenyl‐4‐aminophenyl)ether, and various dicarboxylic acids. These polymers were highly soluble in many organic solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures and high char yields (higher than 50 at 800 °C in nitrogen). The polymer films showed reversible electrochemical oxidation and electrochromism with high contrast ratio in the visible range, which also exhibited moderate coloration efficiency (CE), low switching time, and good stability. Especially, the polyamides with two electroactive nitrogen centers only showed one‐stage oxidative coloring (no intervalence charge‐transfer [IV‐CT] band was detected), implying the two electrons are simultaneously removed from the TPAO units on account of the ether‐linkage definitely isolated the two redox centers. The mixed‐valence (MV) Class I/II/III transition and electrochemistry of the synthesized model compounds were investigated for the bridged triarylamine system with various N? N distances and intramolecular electron transfer (ET) capability. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Conjugated polymers containing electron‐transporting, hole‐transporting, and blue light‐emitting units were synthesized by Suzuki polycondensation. These copolymers exhibited excellent thermal and optical stability. Optical investigation indicated that the incorporation of the spirobifluorene units in the polymer main chain could markedly increase the effective conjugation length of polymers. Electrochemical studies showed that the incorporation of spirobifluorene unit could raise the electrochemical stability and improve the electron‐ and hole‐injecting abilities. The electroluminescent results also showed that the introducing of spirobifluorene units could significantly improve the device performance. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1349–1356, 2008  相似文献   

17.
A series of copolymers PCt‐co‐Poly(N‐vinylcarbazole) were synthesized through common radical polymerization, in which P‐Ct as a kind of mesogen‐jacketed liquid crystalline polymer was introduced, and the effects of copolymers composing variation on the optical properties of the polymers were studied. The structures and properties of the copolymers were characterized and evaluated by thermogravimetric (TGA), UV, photoluminescence (PL), cyclic voltammetry (CV), and electroluminescence (EL) analyses. All the polymers enjoy high thermal stability. PL peaks in the film show blue‐shift compared with in solutions and fluorescent quantum efficiency decreased with the N‐vinylcarbazole (nvk) content increasing, which supported the efficient energy transfer from nvk units to the oxadiazole units. CV revealed that, with the incorporation of nvk to the copolymer, these copolymers had high‐lying HOMO energy levels ranging from ?5.94 to ?6.09 eV. Single‐layer light‐emitting diodes (LEDs) with the configuration of ITO/PEDOT/PCt‐nvk/Mg:Ag/Ag were fabricated, which emit a blue light around 450 and 490 nm with a maximum luminance of 703 cd/m2. The device performance varies with the content of nvk and device configuration, with device configuration ( b ) and PCt‐nvk8 giving the best value of external quantum efficiency of 0.27%. We show here that by proper design copolymer structure and modification of device configuration can exhibit strong blue EL in higher external quantum efficiency. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1843–1851, 2008  相似文献   

18.
A novel ferrocene‐containing porous organic polymer (FPOP) has been prepared by Sonogashira‐Hagihara coupling reaction of 1,1′‐dibromoferrocene and tetrakis(4‐ethynylphenyl)silane. Compared with other polymers, the resulting polymer possesses excellent thermal stability with the decomposition temperature of 415°C and high porosity with Brunauer–Emmett–Teller (BET) surface area of 542 m2 g?1 as measured by nitrogen adsorption‐desoprtion isotherm at 77 K. For applications, it shows moderate carbon dioxide uptakes of up to 1.42 mmol g?1 (6.26 wt%) at 273 K/1.0 bar and 0.82 mmol g?1 (3.62 wt%) at 298 K/1.0 bar, and hydrogen capacity of up to 0.45 mmol g?1 (0.91 wt%) at 77 K/1.0 bar, indicating that FPOP might be utilized as a promising candidate for storing carbon dioxide and hydrogen. Although FPOP possesses lower porosity than many porous polymers, the gas capacities are higher or comparable to them, thereby revealing that the incorporation of ferrocene units into the network is an effective strategy to enhance the affinity between the framework and gas.  相似文献   

19.
A series of novel aromatic diamines ( 2 – 4 ) containing the alkyl‐, aryl, or chloro‐substituted group of phthalazinone segments were synthesized via two synthetic steps starting from 4‐(3‐R‐4‐hydroxyphenyl)‐2,3‐phthalazinone‐1 (R = Ph, CH3, Cl). Three series of aromatic polyamides containing phthalazinone moieties were prepared through diamines 2 – 4 reacting with different aromatic dicarboxylic acids via a direct Yamazaki–Higashi phosphorylation polycondensation reaction. The resulting aromatic polyamides had inherent viscosities in the range of 0.40–0.76 dL/g. The thermal property of the polyamides was examined with DSC and thermogravimetric analysis. The glass‐transition temperatures of these polyamides ranged from 298 to 340 °C. The 10% mass‐loss temperature was above 405 °C under nitrogen. Structures of monomers 2 – 4 and the polymers were confirmed by Fourier transform infrared spectroscopy, 1H NMR, and mass spectrometry. Good solubility of these polymers in polar solvents such as N‐methylpyrrolidone, dimethylformamide, dimethylacetamide (DMAc), and m‐cresol was observed, and tough, flexible films were obtained from the polymer's DMAc solutions. The effect of the substituted group on the physical property of polymers was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2026–2030, 2004  相似文献   

20.
A series of new organosoluble poly(amine hydrazide)s were synthesized via the Yamazaki phosphorylation reaction and were solution‐cast into transparent films. Differential scanning calorimetry indicated that the hydrazide polymers could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(amine‐1,3,4‐oxadiazole)s exhibited glass‐transition temperatures in the range of 276–297 °C, 10% weight loss temperatures in excess of 520 °C, and char yields at 800 °C in nitrogen higher than 67%. The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of these polymers prepared by the casting of polymer solutions onto an indium tin oxide coated glass substrate exhibited two reversible oxidative redox couples at 1.10–1.19 and 1.35–1.60 V versus Ag/AgCl in an acetonitrile solution, respectively. The poly(amine hydrazide)s revealed excellent stability of the electrochromic characteristics, changing color from the original pale yellow to green and then to blue. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 48–58, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号